MemLoadDll.h

#if !defined(Q_OS_LINUX)
#pragma once typedef BOOL (__stdcall *ProcDllMain)(HINSTANCE, DWORD, LPVOID ); class CMemLoadDll
{
public:
CMemLoadDll();
~CMemLoadDll();
BOOL MemLoadLibrary( void *lpFileData , int DataLength); // Dll file data buffer
FARPROC MemGetProcAddress(LPCSTR lpProcName);
private:
BOOL isLoadOk;
BOOL CheckDataValide(void *lpFileData, int DataLength);
int CalcTotalImageSize();
void CopyDllDatas(void *pDest, void *pSrc);
BOOL FillRavAddress(void *pBase);
void DoRelocation(void *pNewBase);
int GetAlignedSize(int Origin, int Alignment);
private:
ProcDllMain pDllMain; private:
DWORD pImageBase;
PIMAGE_DOS_HEADER pDosHeader;
PIMAGE_NT_HEADERS pNTHeader;
PIMAGE_SECTION_HEADER pSectionHeader; };
#endif

MemLoadDll.cpp

#if !defined(Q_OS_LINUX)  

#include <windows.h>
#include <assert.h>
#include "MemLoadDll.h" #include "QDebug" CMemLoadDll::CMemLoadDll()
{
isLoadOk = FALSE;
pImageBase = NULL;
pDllMain = NULL;
} CMemLoadDll::~CMemLoadDll()
{
if(isLoadOk)
{
assert(pImageBase != NULL);
assert(pDllMain != NULL);
//脱钩,准备卸载dll
pDllMain((HINSTANCE)pImageBase,DLL_PROCESS_DETACH,);
VirtualFree((LPVOID)pImageBase, , MEM_RELEASE);
}
} //MemLoadLibrary函数从内存缓冲区数据中加载一个dll到当前进程的地址空间,缺省位置0x10000000
//返回值: 成功返回TRUE , 失败返回FALSE
//lpFileData: 存放dll文件数据的缓冲区
//DataLength: 缓冲区中数据的总长度
BOOL CMemLoadDll::MemLoadLibrary(void *lpFileData, int DataLength)
{
if (pImageBase != NULL)
{
return FALSE; //已经加载一个dll,还没有释放,不能加载新的dll
} //检查数据有效性,并初始化
if (!CheckDataValide(lpFileData, DataLength))
{
return FALSE;
} //计算所需的加载空间
int ImageSize = CalcTotalImageSize();
if (ImageSize == )
{
return FALSE;
} // 分配虚拟内存
void *pMemoryAddress = VirtualAlloc((LPVOID)NULL, ImageSize,
MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if (pMemoryAddress == NULL)
{
return FALSE;
}
else
{
CopyDllDatas(pMemoryAddress, lpFileData); //复制dll数据,并对齐每个段 //重定位信息
if (pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress >
&& pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].Size > )
{
DoRelocation(pMemoryAddress);
} //填充引入地址表
if (!FillRavAddress(pMemoryAddress)) //修正引入地址表失败
{
VirtualFree(pMemoryAddress, , MEM_RELEASE);
return FALSE;
} //修改页属性。应该根据每个页的属性单独设置其对应内存页的属性。这里简化一下。
//统一设置成一个属性PAGE_EXECUTE_READWRITE
unsigned long old;
VirtualProtect(pMemoryAddress, ImageSize, PAGE_EXECUTE_READWRITE, &old);
} //修正基地址
pNTHeader->OptionalHeader.ImageBase = (DWORD)pMemoryAddress; //接下来要调用一下dll的入口函数,做初始化工作。
pDllMain = (ProcDllMain)(pNTHeader->OptionalHeader.AddressOfEntryPoint + (DWORD) pMemoryAddress); BOOL InitResult = pDllMain((HINSTANCE)pMemoryAddress, DLL_PROCESS_ATTACH, );
if (!InitResult) //初始化失败
{
pDllMain((HINSTANCE)pMemoryAddress, DLL_PROCESS_DETACH, );
VirtualFree(pMemoryAddress, , MEM_RELEASE);
pDllMain = NULL;
return FALSE;
} isLoadOk = TRUE;
pImageBase = (DWORD)pMemoryAddress;
return TRUE;
} //MemGetProcAddress函数从dll中获取指定函数的地址
//返回值: 成功返回函数地址 , 失败返回NULL
//lpProcName: 要查找函数的名字或者序号
FARPROC CMemLoadDll::MemGetProcAddress(LPCSTR lpProcName)
{
if (pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress == ||
pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].Size == )
{
return NULL;
} if (!isLoadOk)
{
return NULL;
} DWORD OffsetStart = pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;
DWORD Size = pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].Size; PIMAGE_EXPORT_DIRECTORY pExport = (PIMAGE_EXPORT_DIRECTORY)((DWORD)pImageBase + pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);
int iBase = pExport->Base;
int iNumberOfFunctions = pExport->NumberOfFunctions;
int iNumberOfNames = pExport->NumberOfNames; //<= iNumberOfFunctions
LPDWORD pAddressOfFunctions = (LPDWORD)(pExport->AddressOfFunctions + pImageBase);
LPWORD pAddressOfOrdinals = (LPWORD)(pExport->AddressOfNameOrdinals + pImageBase);
LPDWORD pAddressOfNames = (LPDWORD)(pExport->AddressOfNames + pImageBase); int iOrdinal = -; if (((DWORD)lpProcName & 0xFFFF0000) == ) //IT IS A ORDINAL!
{
iOrdinal = (DWORD)lpProcName & 0x0000FFFF - iBase;
}
else //use name
{
int iFound = -; for (int i = ; i < iNumberOfNames; i++)
{
char *pName = (char * )(pAddressOfNames[i] + pImageBase);
if (strcmp(pName, lpProcName) == )
{
iFound = i;
break;
}
}
if (iFound >= )
{
iOrdinal = (int)(pAddressOfOrdinals[iFound]);
}
} if (iOrdinal < || iOrdinal >= iNumberOfFunctions )
{
return NULL;
}
else
{
DWORD pFunctionOffset = pAddressOfFunctions[iOrdinal];
if (pFunctionOffset > OffsetStart && pFunctionOffset < (OffsetStart + Size)) //maybe Export Forwarding
{
return NULL;
}
else
{
return (FARPROC)(pFunctionOffset + pImageBase);
}
} } // 重定向PE用到的地址
void CMemLoadDll::DoRelocation( void *NewBase)
{
/* 重定位表的结构:
// DWORD sectionAddress, DWORD size (包括本节需要重定位的数据)
// 例如 1000节需要修正5个重定位数据的话,重定位表的数据是
// 00 10 00 00 14 00 00 00 xxxx xxxx xxxx xxxx xxxx 0000
// ----------- ----------- ----
// 给出节的偏移 总尺寸=8+6*2 需要修正的地址 用于对齐4字节
// 重定位表是若干个相连,如果address 和 size都是0 表示结束
// 需要修正的地址是12位的,高4位是形态字,intel cpu下是3
*/
//假设NewBase是0x600000,而文件中设置的缺省ImageBase是0x400000,则修正偏移量就是0x200000
DWORD Delta = (DWORD)NewBase - pNTHeader->OptionalHeader.ImageBase; //注意重定位表的位置可能和硬盘文件中的偏移地址不同,应该使用加载后的地址
PIMAGE_BASE_RELOCATION pLoc = (PIMAGE_BASE_RELOCATION)((unsigned long)NewBase
+ pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress);
while ((pLoc->VirtualAddress + pLoc->SizeOfBlock) != ) //开始扫描重定位表
{
WORD *pLocData = (WORD *)((int)pLoc + sizeof(IMAGE_BASE_RELOCATION));
//计算本节需要修正的重定位项(地址)的数目
int NumberOfReloc = (pLoc->SizeOfBlock - sizeof(IMAGE_BASE_RELOCATION)) / sizeof(WORD);
for ( int i = ; i < NumberOfReloc; i++)
{
if ( (DWORD)(pLocData[i] & 0xF000) == 0x00003000) //这是一个需要修正的地址
{
// 举例:
// pLoc->VirtualAddress = 0x1000;
// pLocData[i] = 0x313E; 表示本节偏移地址0x13E处需要修正
// 因此 pAddress = 基地址 + 0x113E
// 里面的内容是 A1 ( 0c d4 02 10) 汇编代码是: mov eax , [1002d40c]
// 需要修正1002d40c这个地址
DWORD *pAddress = (DWORD *)((unsigned long)NewBase + pLoc->VirtualAddress + (pLocData[i] & 0x0FFF));
*pAddress += Delta;
}
}
//转移到下一个节进行处理
pLoc = (PIMAGE_BASE_RELOCATION)((DWORD)pLoc + pLoc->SizeOfBlock);
}
} //填充引入地址表
BOOL CMemLoadDll::FillRavAddress(void *pImageBase)
{
// 引入表实际上是一个 IMAGE_IMPORT_DESCRIPTOR 结构数组,全部是0表示结束
// 数组定义如下:
//
// DWORD OriginalFirstThunk; // 0表示结束,否则指向未绑定的IAT结构数组
// DWORD TimeDateStamp;
// DWORD ForwarderChain; // -1 if no forwarders
// DWORD Name; // 给出dll的名字
// DWORD FirstThunk; // 指向IAT结构数组的地址(绑定后,这些IAT里面就是实际的函数地址) int i; unsigned long Offset = pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress ;
if (Offset == )
{
return TRUE; //No Import Table
}
PIMAGE_IMPORT_DESCRIPTOR pID = (PIMAGE_IMPORT_DESCRIPTOR)((unsigned long) pImageBase + Offset);
while (pID->Characteristics != )
{
PIMAGE_THUNK_DATA pRealIAT = (PIMAGE_THUNK_DATA)((unsigned long)pImageBase + pID->FirstThunk);
PIMAGE_THUNK_DATA pOriginalIAT = (PIMAGE_THUNK_DATA)((unsigned long)pImageBase + pID->OriginalFirstThunk);
//获取dll的名字
WCHAR buf[]; //dll name;
BYTE *pName = (BYTE *)((unsigned long)pImageBase + pID->Name);
for (i = ; i < ; i++)
{
if (pName[i] == )
{
break;
}
buf[i] = pName[i];
}
if (i >= )
{
return FALSE; // bad dll name
}
else
{
buf[i] = ;
}
HMODULE hDll = GetModuleHandle(buf);
if (hDll == NULL)
{
hDll = LoadLibrary(buf);
}
if (hDll == NULL)
{
return FALSE; //NOT FOUND DLL
}
//获取DLL中每个导出函数的地址,填入IAT
//每个IAT结构是 :
// union { PBYTE ForwarderString;
// PDWORD Function;
// DWORD Ordinal;
// PIMAGE_IMPORT_BY_NAME AddressOfData;
// } u1;
// 长度是一个DWORD ,正好容纳一个地址。
for (i = ; ; i++)
{
if (pOriginalIAT[i].u1.Function == )
{
break;
}
FARPROC lpFunction = NULL;
if (pOriginalIAT[i].u1.Ordinal & IMAGE_ORDINAL_FLAG) //这里的值给出的是导出序号
{
lpFunction = GetProcAddress(hDll, (LPCSTR)(pOriginalIAT[i].u1.Ordinal & 0x0000FFFF));
}
else //按照名字导入
{
//获取此IAT项所描述的函数名称
PIMAGE_IMPORT_BY_NAME pByName = (PIMAGE_IMPORT_BY_NAME)
((DWORD)pImageBase + (DWORD)(pOriginalIAT[i].u1.AddressOfData));
// if(pByName->Hint !=0)
// lpFunction = GetProcAddress(hDll, (LPCSTR)pByName->Hint);
// else
lpFunction = GetProcAddress(hDll, (char *)pByName->Name);
} if (lpFunction != NULL) //找到了!
{
pRealIAT[i].u1.Function = (DWORD)lpFunction;//(PDWORD) lpFunction;
}
else
{
return FALSE;
}
} //move to next
pID = (PIMAGE_IMPORT_DESCRIPTOR)( (DWORD)pID + sizeof(IMAGE_IMPORT_DESCRIPTOR));
} return TRUE;
} //CheckDataValide函数用于检查缓冲区中的数据是否有效的dll文件
//返回值: 是一个可执行的dll则返回TRUE,否则返回FALSE。
//lpFileData: 存放dll数据的内存缓冲区
//DataLength: dll文件的长度
BOOL CMemLoadDll::CheckDataValide(void *lpFileData, int DataLength)
{
//检查长度
if (DataLength < sizeof(IMAGE_DOS_HEADER))
{
return FALSE;
}
pDosHeader = (PIMAGE_DOS_HEADER)lpFileData; // DOS头
//检查dos头的标记
if (pDosHeader->e_magic != IMAGE_DOS_SIGNATURE)
{
return FALSE; //0x5A4D : MZ
} //检查长度
if ((DWORD)DataLength < (pDosHeader->e_lfanew + sizeof(IMAGE_NT_HEADERS)) )
{
return FALSE;
}
//取得pe头
pNTHeader = (PIMAGE_NT_HEADERS)( (unsigned long)lpFileData + pDosHeader->e_lfanew); // PE头
//检查pe头的合法性
if (pNTHeader->Signature != IMAGE_NT_SIGNATURE)
{
return FALSE; //0x00004550 : PE00
}
if ((pNTHeader->FileHeader.Characteristics & IMAGE_FILE_DLL) == ) //0x2000 : File is a DLL
{
return FALSE;
}
if ((pNTHeader->FileHeader.Characteristics & IMAGE_FILE_EXECUTABLE_IMAGE) == ) //0x0002 : 指出文件可以运行
{
return FALSE;
}
if (pNTHeader->FileHeader.SizeOfOptionalHeader != sizeof(IMAGE_OPTIONAL_HEADER))
{
return FALSE;
} //取得节表(段表)
pSectionHeader = (PIMAGE_SECTION_HEADER)((int)pNTHeader + sizeof(IMAGE_NT_HEADERS));
//验证每个节表的空间
for (int i = ; i < pNTHeader->FileHeader.NumberOfSections; i++)
{
if ((pSectionHeader[i].PointerToRawData + pSectionHeader[i].SizeOfRawData) > (DWORD)DataLength)
{
return FALSE;
}
}
return TRUE;
} //计算对齐边界
int CMemLoadDll::GetAlignedSize(int Origin, int Alignment)
{
return (Origin + Alignment - ) / Alignment * Alignment;
} //计算整个dll映像文件的尺寸
int CMemLoadDll::CalcTotalImageSize()
{
int Size;
if (pNTHeader == NULL)
{
return ;
}
int nAlign = pNTHeader->OptionalHeader.SectionAlignment; //段对齐字节数 // 计算所有头的尺寸。包括dos, coff, pe头 和 段表的大小
Size = GetAlignedSize(pNTHeader->OptionalHeader.SizeOfHeaders, nAlign);
// 计算所有节的大小
for (int i = ; i < pNTHeader->FileHeader.NumberOfSections; ++i)
{
//得到该节的大小
int CodeSize = pSectionHeader[i].Misc.VirtualSize ;
int LoadSize = pSectionHeader[i].SizeOfRawData;
int MaxSize = (LoadSize > CodeSize) ? (LoadSize) : (CodeSize); int SectionSize = GetAlignedSize(pSectionHeader[i].VirtualAddress + MaxSize, nAlign);
if (Size < SectionSize)
{
Size = SectionSize; //Use the Max;
}
}
return Size;
}
//CopyDllDatas函数将dll数据复制到指定内存区域,并对齐所有节
//pSrc: 存放dll数据的原始缓冲区
//pDest:目标内存地址
void CMemLoadDll::CopyDllDatas(void *pDest, void *pSrc)
{
// 计算需要复制的PE头+段表字节数
int HeaderSize = pNTHeader->OptionalHeader.SizeOfHeaders;
int SectionSize = pNTHeader->FileHeader.NumberOfSections * sizeof(IMAGE_SECTION_HEADER);
int MoveSize = HeaderSize + SectionSize;
//复制头和段信息
memmove(pDest, pSrc, MoveSize); //复制每个节
for (int i = ; i < pNTHeader->FileHeader.NumberOfSections; ++i)
{
if (pSectionHeader[i].VirtualAddress == || pSectionHeader[i].SizeOfRawData == )
{
continue;
}
// 定位该节在内存中的位置
void *pSectionAddress = (void *)((unsigned long)pDest + pSectionHeader[i].VirtualAddress);
// 复制段数据到虚拟内存
memmove((void *)pSectionAddress,
(void *)((DWORD)pSrc + pSectionHeader[i].PointerToRawData),
pSectionHeader[i].SizeOfRawData);
} //修正指针,指向新分配的内存
//新的dos头
pDosHeader = (PIMAGE_DOS_HEADER)pDest;
//新的pe头地址
pNTHeader = (PIMAGE_NT_HEADERS)((int)pDest + (pDosHeader->e_lfanew));
//新的节表地址
pSectionHeader = (PIMAGE_SECTION_HEADER)((int)pNTHeader + sizeof(IMAGE_NT_HEADERS));
return ;
}
#endif

『转载』从内存资源中加载C++程序集:CMemLoadDll的更多相关文章

  1. 『转载』hadoop2.x常用端口、定义方法及默认端口

    『转载』hadoop2.x常用端口.定义方法及默认端口 1.问题导读 DataNode的http服务的端口.ipc服务的端口分别是哪个? NameNode的http服务的端口.ipc服务的端口分别是哪 ...

  2. cocos2dx中加载图片资源的方法,和从内存中获取已经加载的图片资源的方法

    游戏中通常需要将常用的资源如:声音,图片,plist文件,提前加载进内存,以加快游戏的流畅度 1.预加载声音: SimpleAudioEngine::getInstance()->preload ...

  3. 『转载』Debussy快速上手(Verdi相似)

    『转载』Debussy快速上手(Verdi相似) Debussy 是NOVAS Software, Inc(思源科技)发展的HDL Debug & Analysis tool,这套软体主要不是 ...

  4. 从内存中加载并启动一个exe

    windows似乎只提供了一种启动进程的方法:即必须从一个可执行文件中加载并启动.而下面这段代码就是提供一种可以直接从内存中启动一个exe的变通办法.用途嘛, 也许可以用来保护你的exe,你可以对要保 ...

  5. Direct2D开发:MFC下从资源文件中加载位图

    转载请注明出处:http://www.cnblogs.com/ye-ming 0X01 概述: 相对于GDI处理界面,Direct2D有得天独厚的优势,下图就是Direct2D与GDI的效果对比,wi ...

  6. Spring中资源的加载原来是这么一回事啊!

    1. 简介 在JDK中 java.net.URL 适用于加载资源的类,但是 URL 的实现类都是访问网络资源的,并没有可以从类路径或者相对路径获取文件及 ServletContext , 虽然可以通过 ...

  7. 在Unity3D的网络游戏中实现资源动态加载

    用Unity3D制作基于web的网络游戏,不可避免的会用到一个技术-资源动态加载.比如想加载一个大场景的资源,不应该在游戏的开始让用户长时间等待全部资源的加载完毕.应该优先加载用户附近的场景资源,在游 ...

  8. VC++ 使用WebBrowser控件中html文件以资源形式加载

    . . . . //加载资源文件中的HTML,IDR_HTML1就是HTML文件在资源文件中的ID wchar_t self_path[MAX_PATH] = { }; GetModuleFileNa ...

  9. 从内存中加载DLL Delphi版(转)

    源:从内存中加载DLL DELPHI版 原文 : http://www.2ccc.com/article.asp?articleid=5784 MemLibrary.pas //从内存中加载DLL D ...

随机推荐

  1. Openstack_O版(otaka)部署_准备环境和依赖软件

    架构介绍 本次案列为基本的三节点部署 一:网络: 1.管理网络:192.168.198.0/24 2.数据网络:10.0.0.0/24 二:操作系统: CentOS Linux release 7.3 ...

  2. angular自定义过滤器操作实例

    //模块名字var filters = angular.module("customFilter",[]);//过滤器名字filters.filter("uniqueCa ...

  3. JSP页面输出九九乘法表--JSP基础

    index.jsp: <%@ page language="java" import="java.util.*" pageEncoding="U ...

  4. RobotFramework下的http接口自动化Create Http Context关键字的使用

    要想使用HttpLibrary,Create Http Context 关键字的作用相当于是创建了一个http 调用的环境,是必不可少的一个关键字. Create Http Context 关键字需要 ...

  5. 严格次小生成树(Bzoj1977:[Beijing2010组队]次小生成树)

    非严格次小生成树 很简单,先做最小生成树 然后枚举没加入的边加入,替换掉这个环内最大的边 最后取\(min\) 严格次小生成树 还是一样的 可以考虑维护一个严格次大值 最大值和枚举的边相同就替换次大值 ...

  6. 开发中使用mongoTemplate进行Aggregation聚合查询

    笔记:使用mongo聚合查询(一开始根本没接触过mongo,一点一点慢慢的查资料完成了工作需求) 需求:在订单表中,根据buyerNick分组,统计每个buyerNick的电话.地址.支付总金额以及总 ...

  7. 利用Cglib实现AOP

    前文讲了, 可以利用Spring, Guice等框架提供的容器实现AOP, 如果想绕过容器, 直接注入Class, 可以利用Cglib为对象加上动态代理,实现代码切入, 但是每次调用比较繁琐, 因此我 ...

  8. Problem : 1008 ( Elevator )

    好操蛋啊,电梯竟然能原地不动,你大爷的,这逻辑,太弱智了.... Problem : 1008 ( Elevator )     Judge Status : Accepted RunId : 103 ...

  9. Linux epoll源码--

    Linux系统运行源码剖析-epoll代码注释 理解了中断.等待队列.调度,你就能懂Linux的80%. --老子 转发的话,请注明出处哦:http://www.cnblogs.com/stoneha ...

  10. 使用Angular CLI进行Build (构建) 和 Serve

    第一篇文章是: "使用angular cli生成angular5项目" : http://www.cnblogs.com/cgzl/p/8594571.html 第二篇文章是: & ...