The Luckiest Number

    题目大意:给你一个int范围内的正整数n,求这样的最小的x,使得:连续的x个8可以被n整除。

    注释:如果无解输出0。poj多组数据,第i组数据前面加上Case i: 即可。

      想法:这题还是挺好的。我最开始的想法是一定有超级多的数输出0。然后...我就在哪里找啊找....其实这道题是一道比较好玩儿的数论题。我们思考:连续的8可用什么来表示出来?$\frac{(10^x-1)}{9}\cdot 8$。其实想到这一步这题就做完了。这题的精髓就在于告诉我们连续的连续的一串数的表达方式。想到这点其实有一个比较容易接受的方法:这鬼东西是一个等比数列。然后,式子就可以化成了以下的形式及推导

    $\Rightarrow n|\frac{10^x-1}{9}\cdot 8$

    $\Rightarrow 9\cdot n|(10^x-1)\cdot 8$

    $\Rightarrow \frac{9\cdot n}{gcd(n,8)}|\frac{(10^x-1)\cdot8}{gcd(n,8)}$

    $\because gcd(\frac n{gcd(n,8)},\frac8{gcd(n,8)})=1$

    且$gcd(9,8)=1$

    $\therefore gcd(\frac{9\cdot n}{gcd(n,8)},\frac{8}{gcd(n,8)})=1$

    $\Rightarrow \frac{9\cdot n}{gcd(n,8)}|10^x-1$

    $\Rightarrow 10^x\equiv1(mod\frac{9\cdot n}{gcd(n,8)})$

    所以此时,我们只需要枚举mod数即可。但是有些操作是不必要的,在此,我们有两种简单的优化:

    1.对于mod数取$\varphi$,然后暴力枚举$\varphi$的所有因子。时间复杂度$O(\sqrt{n})$,验证是用快速幂,时间复杂度O(logn),所以,总时间复杂$O(\sqrt{n}\cdot {logn})$。

    2.用BSGS优化,我没想到(鸣谢CQzhangyu)。时间复杂度同理。

    但是对于第一种我们可以用Miller_Rabin 和Pullard_rho进行爆炸般的优化,但是没什么必要......

      最后,附上丑陋的代码......

#include <iostream>
#include <cstdio>
typedef long long ll;
using namespace std;
ll gcd(ll a,ll b)//只取一次mod的gcd,鸣谢EdwardFrog
{
return b?gcd(b,a%b):a;
}
ll quick_multiply(ll a,ll b,ll mod)//快速乘,防止爆longlong,虽然没有必要
{
ll ans=;
a%=mod;
b%=mod;
while(b)
{
if(b&) ans=(ans+a)%mod;
b>>=;
a=(a+a)%mod;
}
return ans;
}
ll quick_power(ll a,ll b,ll mod)//这题不爆longlong,但是这样是必须的,因为9*n在longlong范围内
{
ll ans=;
a%=mod;
while(b)
{
if(b&) ans=quick_multiply(ans,a,mod);
b>>=;
a=quick_multiply(a,a,mod);
}
return ans;
}
int main()
{
ll n;
ll cnt=;
while()
{
scanf("%lld",&n);
if(n==) return ;
printf("Case %lld: ",++cnt);
n=*n/gcd(n,);
ll m=n;
ll phi=n;
if(gcd(n,)!=)//这是欧拉定理所必须满足的,如果不行显然无解
{
printf("0\n");
continue;
}
for(ll i=;i*i<=m;++i)
{
if(m%i==)
{
phi=phi/i*(i-);
while(m%i==)
{
m/=i;
}
}
}
if(m!=) phi=phi/m*(m-);
// cout<<"phi="<<phi<<endl;调试信息
ll minn=phi;//我想取最小值,且最大值是phi
for(ll i=;i*i<=phi;i++)//这步是验证。
{
if(phi%i==)
{
if(quick_power(,i,n)==) minn=min(minn,i);
if(quick_power(,phi/i,n)==) minn=min(minn,phi/i);
}
}
printf("%lld\n",minn);
}
}

    小结:错误,枚举一个数的因子其实是可以根号时间内完成的...我傻逼了......

        还有,别忘记phi开始的初值是n,不是1.

poj 3696 The Luckiest Number的更多相关文章

  1. poj 3696 The Luckiest number 欧拉函数在解a^x=1modm的应用

    题意: 给一个L,求长度最小的全8数满足该数是L的倍数. 分析: 转化为求方程a^x==1modm. 之后就是各种数学论证了. 代码: //poj 3696 //sep9 #include <i ...

  2. POJ 3696 The Luckiest number (欧拉函数,好题)

    该题没思路,参考了网上各种题解.... 注意到凡是那种11111..... 22222..... 33333.....之类的序列都可用这个式子来表示:k*(10^x-1)/9进而简化:8 * (10^ ...

  3. POJ3696 The Luckiest number

    题意 Language:Default The Luckiest number Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7 ...

  4. POJ_3696 The Luckiest number 【欧拉定理+同余式+对取模的理解】

    一.题目 Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his ...

  5. poj_3696_The Luckiest number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  6. POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  7. HDU 2462 The Luckiest number

    The Luckiest number Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Ori ...

  8. The Luckiest number(hdu2462)

    The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. 【POJ 3696】 The Luckiest number

    [题目链接] http://poj.org/problem?id=3696 [算法] 设需要x个8 那么,这个数可以表示为 : 8(10^x - 1) / 9, 由题, L | 8(10^x - 1) ...

随机推荐

  1. dojo省份地市级联之省份Dao接口类(三)

    dojo省份地市级联之省份Dao接口类 ProvinceDao.java: /** * 省份-Dao */ package com.you.dao; import java.util.List; im ...

  2. Flex中的FusionCharts 3D柱形图

    1.3D柱形图源码 <?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:f ...

  3. R语言数据集合并、数据增减、不等长合并

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 数据选取与简单操作: which 返回一个向量 ...

  4. CentOS配置日志集中管理

    ①首先有产生日志的服务器和储存日志的服务器 ②产生.接收日志的服务器都必须安装rsyslog服务(可以通过yum.rpm.源码包安装),rsyslog支持C/S模式 ③日志存储服务器需要编辑rsysl ...

  5. SpringMVC拦截器(包括自定以拦截器--实现HandlerInterceptorAdapter)(资源和权限管理)

    一,springmvc的配置 <!-- 访问拦截 --> <mvc:interceptors> <mvc:interceptor> <mvc:mapping ...

  6. 【转】Swagger2 添加HTTP head参数

    大家使用swagger往往会和JWT一起使用,而一般使用jwt会将token放在head里,这样我们在使用swagger测试的时候并不方便,因为跨域问题它默认不能自定义head参数.然后自己去网上找, ...

  7. 巨幅SQL优化(SQL Tuning)——秒杀十几个小时不出结果的SQL

    今天接到用户的需求,某程序十几个小时没出结果了,很纳闷儿,于是让相关人员取了explain plan等信息,拿到explain plan后,搂一眼,就知道问题出在了哪里,explain plan跑偏了 ...

  8. 为你揭露2018微信公开课pro的12个重点

    为你揭露2018微信公开课pro的12个重点 1月15日,微信公开课Pro版现场,微信又为我们带来了一些重磅消息,小程序依旧是本次微信公开课Pro的绝对重点.小编为大家整理了公开课的12个重点,带大家 ...

  9. 都是SCI惹的祸?

    都是SCI惹的祸? 过去只知道地质学家需要跋山涉水寻找宝藏,最近同一位海外归来的学者谈起,方知少数其它领域的科研人员,也"跋山涉水",在内地研究机构寻找可以写好文章的研究成果,不管 ...

  10. 期望$DP$ 方法总结

    期望\(DP\) 方法总结 这个题目太大了,变化也层出不穷,这里只是我的一点心得,不定期更新! 1. 递推式问题 对于无穷进行的操作期望步数问题,一般可用递推式解决. 对于一个问题\(ans[x]\) ...