The Luckiest Number

    题目大意:给你一个int范围内的正整数n,求这样的最小的x,使得:连续的x个8可以被n整除。

    注释:如果无解输出0。poj多组数据,第i组数据前面加上Case i: 即可。

      想法:这题还是挺好的。我最开始的想法是一定有超级多的数输出0。然后...我就在哪里找啊找....其实这道题是一道比较好玩儿的数论题。我们思考:连续的8可用什么来表示出来?$\frac{(10^x-1)}{9}\cdot 8$。其实想到这一步这题就做完了。这题的精髓就在于告诉我们连续的连续的一串数的表达方式。想到这点其实有一个比较容易接受的方法:这鬼东西是一个等比数列。然后,式子就可以化成了以下的形式及推导

    $\Rightarrow n|\frac{10^x-1}{9}\cdot 8$

    $\Rightarrow 9\cdot n|(10^x-1)\cdot 8$

    $\Rightarrow \frac{9\cdot n}{gcd(n,8)}|\frac{(10^x-1)\cdot8}{gcd(n,8)}$

    $\because gcd(\frac n{gcd(n,8)},\frac8{gcd(n,8)})=1$

    且$gcd(9,8)=1$

    $\therefore gcd(\frac{9\cdot n}{gcd(n,8)},\frac{8}{gcd(n,8)})=1$

    $\Rightarrow \frac{9\cdot n}{gcd(n,8)}|10^x-1$

    $\Rightarrow 10^x\equiv1(mod\frac{9\cdot n}{gcd(n,8)})$

    所以此时,我们只需要枚举mod数即可。但是有些操作是不必要的,在此,我们有两种简单的优化:

    1.对于mod数取$\varphi$,然后暴力枚举$\varphi$的所有因子。时间复杂度$O(\sqrt{n})$,验证是用快速幂,时间复杂度O(logn),所以,总时间复杂$O(\sqrt{n}\cdot {logn})$。

    2.用BSGS优化,我没想到(鸣谢CQzhangyu)。时间复杂度同理。

    但是对于第一种我们可以用Miller_Rabin 和Pullard_rho进行爆炸般的优化,但是没什么必要......

      最后,附上丑陋的代码......

#include <iostream>
#include <cstdio>
typedef long long ll;
using namespace std;
ll gcd(ll a,ll b)//只取一次mod的gcd,鸣谢EdwardFrog
{
return b?gcd(b,a%b):a;
}
ll quick_multiply(ll a,ll b,ll mod)//快速乘,防止爆longlong,虽然没有必要
{
ll ans=;
a%=mod;
b%=mod;
while(b)
{
if(b&) ans=(ans+a)%mod;
b>>=;
a=(a+a)%mod;
}
return ans;
}
ll quick_power(ll a,ll b,ll mod)//这题不爆longlong,但是这样是必须的,因为9*n在longlong范围内
{
ll ans=;
a%=mod;
while(b)
{
if(b&) ans=quick_multiply(ans,a,mod);
b>>=;
a=quick_multiply(a,a,mod);
}
return ans;
}
int main()
{
ll n;
ll cnt=;
while()
{
scanf("%lld",&n);
if(n==) return ;
printf("Case %lld: ",++cnt);
n=*n/gcd(n,);
ll m=n;
ll phi=n;
if(gcd(n,)!=)//这是欧拉定理所必须满足的,如果不行显然无解
{
printf("0\n");
continue;
}
for(ll i=;i*i<=m;++i)
{
if(m%i==)
{
phi=phi/i*(i-);
while(m%i==)
{
m/=i;
}
}
}
if(m!=) phi=phi/m*(m-);
// cout<<"phi="<<phi<<endl;调试信息
ll minn=phi;//我想取最小值,且最大值是phi
for(ll i=;i*i<=phi;i++)//这步是验证。
{
if(phi%i==)
{
if(quick_power(,i,n)==) minn=min(minn,i);
if(quick_power(,phi/i,n)==) minn=min(minn,phi/i);
}
}
printf("%lld\n",minn);
}
}

    小结:错误,枚举一个数的因子其实是可以根号时间内完成的...我傻逼了......

        还有,别忘记phi开始的初值是n,不是1.

poj 3696 The Luckiest Number的更多相关文章

  1. poj 3696 The Luckiest number 欧拉函数在解a^x=1modm的应用

    题意: 给一个L,求长度最小的全8数满足该数是L的倍数. 分析: 转化为求方程a^x==1modm. 之后就是各种数学论证了. 代码: //poj 3696 //sep9 #include <i ...

  2. POJ 3696 The Luckiest number (欧拉函数,好题)

    该题没思路,参考了网上各种题解.... 注意到凡是那种11111..... 22222..... 33333.....之类的序列都可用这个式子来表示:k*(10^x-1)/9进而简化:8 * (10^ ...

  3. POJ3696 The Luckiest number

    题意 Language:Default The Luckiest number Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7 ...

  4. POJ_3696 The Luckiest number 【欧拉定理+同余式+对取模的理解】

    一.题目 Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his ...

  5. poj_3696_The Luckiest number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  6. POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  7. HDU 2462 The Luckiest number

    The Luckiest number Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Ori ...

  8. The Luckiest number(hdu2462)

    The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. 【POJ 3696】 The Luckiest number

    [题目链接] http://poj.org/problem?id=3696 [算法] 设需要x个8 那么,这个数可以表示为 : 8(10^x - 1) / 9, 由题, L | 8(10^x - 1) ...

随机推荐

  1. R语言︱非结构化数据处理神器——rlist包

    本文作者:任坤,厦门大学王亚南经济研究院金融硕士生,研究兴趣为计算统计和金融量化交易,pipeR,learnR,rlist等项目的作者. 近年来,非关系型数据逐渐获得了更广泛的关注和使用.下面分别列举 ...

  2. List转换成JSON对象

    List转换成JSON对象 1.准备工作 导入jar包 (1)json-lib-2.3-jdk15.jar (2)commons-beanutils-1.8.0.jar (3)commons-coll ...

  3. MyEclipse提示

    MyEclipse提示 1.具体如下图 2.提示原因 3.解决办法

  4. 代码管理必备-----git使用上传码云

    作为一个程序员,你要学会代码的管理,这是一个最基本的修养,就像是一个剑客的剑谱,代码管理,目前流行的是svn和git,但是很不好的是git如果没有插件的话,很多人都不会用git bash 来实现自己的 ...

  5. 畅通工程 HDU - 1863

    省政府"畅通工程"的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可).经过调查评估,得到的统计表中列出了有可能建设公路的若干条道 ...

  6. jQuery框架-1.基础知识

    jQuery简介 jQuery,顾名思义是JavaScript和查询(Query),jQuery是免费.开源的.它可以简化查询DOM对象.处理事件.制作动画.处理Ajax交互过程且兼容多浏览器的jav ...

  7. 用winscp从本地上传文件到服务器上出现复制文件到远端时错误。

    用winscp从本地上传文件到服务器上出现复制文件到远端时错误. 错误码:4 服务器返回的错误消息:write failed 报错如下图所示: 分析过程: 1.刚开始以为是权限不够,后面上网查了一下是 ...

  8. sqoop将mysql连表查询结果导入hdfs文件

    sqoop import --connect jdbc:mysql://ip/数据库 --username 用户名 --password 密码 --query " select p.bidN ...

  9. python基础—装饰器

    python基础-装饰器 定义:一个函数,可以接受一个函数作为参数,对该函数进行一些包装,不改变函数的本身. def foo(): return 123 a=foo(); b=foo; print(a ...

  10. rabbitmq简单收发服务搭建

    消息发送.接收简单代码示例 mq.xml //rabbitmq config spring.rabbitmq.host=ip:host spring.rabbitmq.username= spring ...