关联分析是数据挖掘中常用的分析方法。一个常见的需求比如说寻找出经常一起出现的项目集合。

引入一个定义,项集的支持度(support),是指所有包含这个项集的集合在所有数据集中出现的比例。

规定一个最小支持度,那么不小于这个最小支持度的项集称为频繁项集(frequent item set)。

如何找到数据集中所有的频繁项集呢?

最简单的方法是对所有项集进行统计,可以通过逐渐增大项集大小的方式来遍历所有项集。比如说下面的数据集,先统计所有单个元素集合的支持度,{z} 的支持度为5 (这里把项目出现次数作为支持度,方便描述),然后逐渐增大项集大小,比如{z,r} 的支持度为1

数据集ID 数据
001 r, z, h, j, p
002 z, y, x, w, v, u, t, s
003 z
004 r, x, n, o, s
005 y, r, x, z, q, t, p
006 y, z, x, e, q, s, t, m

显然这样的方式,计算量很大,当项目增多,项集的数目是指数增长的。当然我们也可以应用一些规律

1)如果一个项集是频繁项集,那么它的子集都是频繁项集

2)如果一个项集不是频繁项集,那么它的超集也不是频繁项集

Apriori算法就是应用了这些方法可以减少寻找频繁项集的计算。而FP-Growth算法则另辟蹊径,它在遍历数据的时候构造一个树结构,当树构造完成,每个节点记录的值就是这个节点到根节点路径上的项集的支持度。

首先对数据集中的数据按单个元素的支持度进行重排

数据集ID 数据 按单元数支持度重排后的数据
001 r, z, h, j, p z, r
002 z, y, x, w, v, u, t, s z, x, y, s, t
003 z z
004 r, x, n, o, s x, s, r
005 y, r, x, z, q, t, p z, x, y, r, t
006 y, z, x, e, q, s, t, m z, x, y, s, t

然后把每一行数依次拿来构建FP树。把重排后每一行数据从左到右入树。从空集开始,如果树中已存在现有元素,则增加现有元素的值;如果现有元素不存在,则向树添加一个分支。

树构造完成后,以{x:3}这个节点为例,它表示了从这个节点到根节点路径上集合{x,z}的支持度为3。

那么问题来了,我们如何保证我们能获得所有的频繁项集,即支持度大于最小支持度的项集。是找出节点值大于最小支持度就够了吗?比如设最小支持度为3,从树上可以看出{z,x,y}的支持度为3,但是仔细观察{z,x,y,t}这个项集的支持度也是为3,如何做呢?

首先为每个元素的找到所有前缀路径,一条前缀路径,是指元素父节点到根节点的路径

单元素 前缀路径
z {}: 5
r {x, s}: 1, {z, x, y}: 1, {z}: 1
x {z}: 3, {}: 1
y {z, x}: 3
s {z, x, y}: 2, {x}: 1
t {z, x, y, s}: 2, {z, x, y, r}: 1

然后对每个元素的所有前缀路径再执行一次FP树的构造过程,这样看到去除这个元素后能得到什么样的频繁项集。如下可以顺利得出{z,x,y} + {t}是一个支持度为3的频繁项集。

据此,FP-Growth方法就可以算出数据集中最小支持度为3的频繁项集:{z},{z,x},{z,x,y},{z,x,y,t}

参考:

1. https://www.cnblogs.com/qwertWZ/p/4510857.html

关联分析中寻找频繁项集的FP-growth方法的更多相关文章

  1. 使用 FP-growth 算法高效挖掘海量数据中的频繁项集

    前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本 ...

  2. 第十五篇:使用 FP-growth 算法高效挖掘海量数据中的频繁项集

    前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本 ...

  3. R_Studio(时序)Apriori算法寻找频繁项集的方法

    应用ARIMA(1,1,0)对2015年1月1日到2015年2月6日某餐厅的销售数量做为期5天的预测 setwd('D:\\dat') #install.packages("forecast ...

  4. 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:非hash方法

    http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  5. 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...

  6. FP-Growth算法之频繁项集的挖掘(python)

    前言: 关于 FP-Growth 算法介绍请见:FP-Growth算法的介绍. 本文主要介绍从 FP-tree 中提取频繁项集的算法.关于伪代码请查看上面的文章. FP-tree 的构造请见:FP-G ...

  7. FP-growth算法发现频繁项集(一)——构建FP树

    常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth.Apriori通过不断的构造候选集.筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数 ...

  8. 关联规则—频繁项集Apriori算法

    频繁模式和对应的关联或相关规则在一定程度上刻画了属性条件与类标号之间的有趣联系,因此将关联规则挖掘用于分类也会产生比较好的效果.关联规则就是在给定训练项集上频繁出现的项集与项集之间的一种紧密的联系.其 ...

  9. 海量数据挖掘MMDS week2: Association Rules关联规则与频繁项集挖掘

    http://blog.csdn.net/pipisorry/article/details/48894977 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

随机推荐

  1. 从壹开始前后端分离【 .NET Core2.0 +Vue2.0 】框架之二 || 后端项目搭建

    前言 至于为什么要搭建.Net Core 平台,这个网上的解释以及铺天盖地,想了想,还是感觉重要的一点,跨平台,嗯!没错,而且比.Net 更容易搭建,速度也更快,所有的包均有Nuget提供,不再像以前 ...

  2. Openresty编写Lua代码一例

    1.前段时间纠结了很久,一直弄不清lua和tomcat的联系.一直认为是lua调用tomcat的接口才可使用,后面才明白过来,进入了一个误区,lua本身就是一门独立的脚本语言.在openresty里面 ...

  3. vue-router导航守卫(router.beforeEach())的使用

    好久没写一些东西了,总是感觉有啥缺少的.~~~~恰好碰到最近在写一个移动端项目,遇到了如何使同一个链接在不同条件下跳转到不同路由组件问题,譬如大家经常看到手机中没登录跳转登录页,登陆后跳转个人信息页等 ...

  4. [特别公告]RDIFramework.NET微信公众号迁移通知

    亲爱的伙伴们: 非常感谢您们一直以来对RDIFramework.NET开发框架的关注和支持! 为了进一步完善各项功能,能给大家提供更专业.更官方准确的框架资讯,提供更优质的框架合作服务,我们的微信公众 ...

  5. Asp.Net MVC Https设置

    1.   IIS设置 1.1 创建SSL证书 点击左侧菜单栏顶部,点击“功能视图”里的“服务器证书”: 点击“创建自动签名证书”创建自动签名证书: 1.2 设置SSL证书 点开网站,在“功能视图”里点 ...

  6. httpclient绕过证书验证进行HTTPS请求

    http请求是我们常用的一种web应用的应用层协议,但是由于它的不安全性,现在正在逐渐向https协议过渡.https协议是在http的基础上进行了隧道加密,加密方式有SSL和TLS两种.当serve ...

  7. 配置多版本jdk

    配置办法https://blog.csdn.net/qq342643414/article/details/78364601 可能会遇到的问题https://www.cnblogs.com/chuij ...

  8. bootstrap实现表格

    基本实例样式 效果 代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  9. 对于python爬虫urllib库的一些理解(抽空更新)

    urllib库是Python中一个最基本的网络请求库.可以模拟浏览器的行为,向指定的服务器发送一个请求,并可以保存服务器返回的数据. urlopen函数: 在Python3的urllib库中,所有和网 ...

  10. KsUML 免费的类图建模工具

    最近基于SharpDevelop和NClass两个开源软件,开发了一个免费的类图建模工具,详情请访问 www.TimeGIS.com KsUML类图建模工具是一个用来给软件开发人员使用的一种UML类图 ...