关联分析是数据挖掘中常用的分析方法。一个常见的需求比如说寻找出经常一起出现的项目集合。

引入一个定义,项集的支持度(support),是指所有包含这个项集的集合在所有数据集中出现的比例。

规定一个最小支持度,那么不小于这个最小支持度的项集称为频繁项集(frequent item set)。

如何找到数据集中所有的频繁项集呢?

最简单的方法是对所有项集进行统计,可以通过逐渐增大项集大小的方式来遍历所有项集。比如说下面的数据集,先统计所有单个元素集合的支持度,{z} 的支持度为5 (这里把项目出现次数作为支持度,方便描述),然后逐渐增大项集大小,比如{z,r} 的支持度为1

数据集ID 数据
001 r, z, h, j, p
002 z, y, x, w, v, u, t, s
003 z
004 r, x, n, o, s
005 y, r, x, z, q, t, p
006 y, z, x, e, q, s, t, m

显然这样的方式,计算量很大,当项目增多,项集的数目是指数增长的。当然我们也可以应用一些规律

1)如果一个项集是频繁项集,那么它的子集都是频繁项集

2)如果一个项集不是频繁项集,那么它的超集也不是频繁项集

Apriori算法就是应用了这些方法可以减少寻找频繁项集的计算。而FP-Growth算法则另辟蹊径,它在遍历数据的时候构造一个树结构,当树构造完成,每个节点记录的值就是这个节点到根节点路径上的项集的支持度。

首先对数据集中的数据按单个元素的支持度进行重排

数据集ID 数据 按单元数支持度重排后的数据
001 r, z, h, j, p z, r
002 z, y, x, w, v, u, t, s z, x, y, s, t
003 z z
004 r, x, n, o, s x, s, r
005 y, r, x, z, q, t, p z, x, y, r, t
006 y, z, x, e, q, s, t, m z, x, y, s, t

然后把每一行数依次拿来构建FP树。把重排后每一行数据从左到右入树。从空集开始,如果树中已存在现有元素,则增加现有元素的值;如果现有元素不存在,则向树添加一个分支。

树构造完成后,以{x:3}这个节点为例,它表示了从这个节点到根节点路径上集合{x,z}的支持度为3。

那么问题来了,我们如何保证我们能获得所有的频繁项集,即支持度大于最小支持度的项集。是找出节点值大于最小支持度就够了吗?比如设最小支持度为3,从树上可以看出{z,x,y}的支持度为3,但是仔细观察{z,x,y,t}这个项集的支持度也是为3,如何做呢?

首先为每个元素的找到所有前缀路径,一条前缀路径,是指元素父节点到根节点的路径

单元素 前缀路径
z {}: 5
r {x, s}: 1, {z, x, y}: 1, {z}: 1
x {z}: 3, {}: 1
y {z, x}: 3
s {z, x, y}: 2, {x}: 1
t {z, x, y, s}: 2, {z, x, y, r}: 1

然后对每个元素的所有前缀路径再执行一次FP树的构造过程,这样看到去除这个元素后能得到什么样的频繁项集。如下可以顺利得出{z,x,y} + {t}是一个支持度为3的频繁项集。

据此,FP-Growth方法就可以算出数据集中最小支持度为3的频繁项集:{z},{z,x},{z,x,y},{z,x,y,t}

参考:

1. https://www.cnblogs.com/qwertWZ/p/4510857.html

关联分析中寻找频繁项集的FP-growth方法的更多相关文章

  1. 使用 FP-growth 算法高效挖掘海量数据中的频繁项集

    前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本 ...

  2. 第十五篇:使用 FP-growth 算法高效挖掘海量数据中的频繁项集

    前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本 ...

  3. R_Studio(时序)Apriori算法寻找频繁项集的方法

    应用ARIMA(1,1,0)对2015年1月1日到2015年2月6日某餐厅的销售数量做为期5天的预测 setwd('D:\\dat') #install.packages("forecast ...

  4. 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:非hash方法

    http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  5. 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...

  6. FP-Growth算法之频繁项集的挖掘(python)

    前言: 关于 FP-Growth 算法介绍请见:FP-Growth算法的介绍. 本文主要介绍从 FP-tree 中提取频繁项集的算法.关于伪代码请查看上面的文章. FP-tree 的构造请见:FP-G ...

  7. FP-growth算法发现频繁项集(一)——构建FP树

    常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth.Apriori通过不断的构造候选集.筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数 ...

  8. 关联规则—频繁项集Apriori算法

    频繁模式和对应的关联或相关规则在一定程度上刻画了属性条件与类标号之间的有趣联系,因此将关联规则挖掘用于分类也会产生比较好的效果.关联规则就是在给定训练项集上频繁出现的项集与项集之间的一种紧密的联系.其 ...

  9. 海量数据挖掘MMDS week2: Association Rules关联规则与频繁项集挖掘

    http://blog.csdn.net/pipisorry/article/details/48894977 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

随机推荐

  1. windows安装IDEA

    1.安装下载 https://www.jetbrains.com/idea/download/#section=windows 2.服务器激活地址: 39.129.9.34:8888 https:// ...

  2. 网络协议 15 - P2P 协议:小种子大学问

    [前五篇]系列文章传送门: 网络协议 10 - Socket 编程(上):实践是检验真理的唯一标准 网络协议 11 - Socket 编程(下):眼见为实耳听为虚 网络协议 12 - HTTP 协议: ...

  3. 【Android Studio安装部署系列】十八、Android studio更换APP应用图标

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 Android Studio新建项目后会有一个默认图标,那么如何更换图标呢? 替换图标 这个方案不建议直接在已有项目上更换图标,建议 ...

  4. ES 06 - 通过Kibana插件增删改查ES中的索引文档

    目录 1 document的结构 2 document的常见CRUD操作 2.1 添加商品: 添加文档并建立索引 2.2 查询商品: 检索文档 2.3 修改商品: 替换文档 2.4 修改商品: 更新文 ...

  5. vue.js移动端配置flexible.js

    前言 最近在用vue做移动端项目,网上找了一些移动端适配的方案,个人觉得手淘团队flexible.js还是比较容易上手,在这里做下总结. 主体 flexible.js适配方案采用rem布局,根据屏幕分 ...

  6. zk分布式任务管理

    在我们的系统开发过程 中不可避免的会使用到定时任务的功能,而当我们在生产环境部署的服务超过1台时,就需要考虑任务调度的问题,防止两台或多台服务器上执行同一个任务,这个问题今天咱们就用zookeeper ...

  7. Springboot 系列(七)Spring Boot web 开发之异常错误处理机制剖析

    前言 相信大家在刚开始体验 Springboot 的时候一定会经常碰到这个页面,也就是访问一个不存在的页面的默认返回页面. 如果是其他客户端请求,如接口测试工具,会默认返回JSON数据. { &quo ...

  8. 树莓派播放视频的播放器omxplayer

    omxplyer为树莓派量身定做的一款GPU硬件加速的播放器,很好的解决了树莓派cpu计算力不足的缺点.(播放时cpu一定都不烫手) 1.安装方法: CTRL + ALT + T 调出终端命令行输入 ...

  9. qutebrowser 只用键盘操作的浏览器

    一个 Qt 库制作的最简化浏览器,内核是 Chromium.最大特点就是它自带命令行,可以完全用键盘操作. 下载地址: 链接:https://share.weiyun.com/5Y2Ajvn 密码:m ...

  10. python实现某目录下将多个文件夹内的文件复制到一个文件夹中

    现实生活中,我们经常有这样的需求,如下图,有三个文件夹,文件夹1内含有1.txt文件 文件夹2中内含有2.txt文件,文件夹3中含有3.txt文件.我们有时候需要把1.txt, 2.txt, 3.tx ...