一、使用互斥锁

1、初始化互斥量

pthread_mutex_t mutex =PTHREAD_MUTEX_INITIALIZER;//静态初始化互斥量
int pthread_mutex_init(pthread_mutex_t*mutex,pthread_mutexattr_t*attr);//动态初始化互斥量
int pthread_mutex_destory(pthread_mutex_t*mutex);//撤销互斥量

不能拷贝互斥量变量,但可以拷贝指向互斥量的指针,这样就可以使多个函数或线程共享互斥量来实现同步。上面动态申请的互斥量需要动态的撤销。

2、加锁和解锁互斥量

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t*mutex);

当调用pthread_mutex_lock加锁互斥量时,如果此时互斥量已经被锁住,则调用线程将被阻塞。而pthread_mutex_trylock函数当调用互斥量已经被锁住时调用该函数将返回错误代码EBUSY。使用和信号量一样,先锁住互斥量再处理共享数据,最后解锁互斥量。
     针对上信号量中的示例进行修改得:

#include<pthread.h>
#include<stdio.h>
#include<semaphore.h>
#define NITERS 100000000
/*共享变量*/
unsigned int cnt = 0;
//sem_t mutex;
pthread_mutex_t mutex;
void *count(void *arg)
{
int i;
for(i=0;i<NITERS;i++)
{
pthread_mutex_lock(&mutex);
cnt++;
pthread_mutex_unlock(&mutex);
}
return arg;
}
int main()
{
pthread_t tid1,tid2;
int status;
pthread_mutex_init(&mutex,NULL); pthread_mutex_destroy(&mutex);
if(cnt!=(unsigned)NITERS*2)
printf("Boom!,cnt=%d\n",cnt);
else
printf("Ok cnt=%d\n",cnt);
return 0;
}

3、使用多个互斥量

使用多个互斥量可能造成死锁问题。如下:

线程1                                              线程2

pthread_mutex_lock(&mutex_a);                     pthread_mutex_lock(&mutex_b);

pthread_mutex_lock(&mutex_b);                     pthread_mutex_lock(&mutex_a);

当两个线程都完成第一步时,都无法完成第二步,将造成死锁。可以通过以下两种方法来避免死锁:

固定加锁层次:所有需要同时加锁互斥量A和互斥量B的代码,必须先加锁A再加锁B。

试加锁和回退:在锁住第一个互斥量后,使用pthread_mutex_trylock来加锁其他互斥量,如果失败则将已加锁的互斥量释放,并重新加锁。


二、使用读写锁

通过读写锁,可以对受保护的共享资源进行并发读取和独占写入。读写锁是可以在读取或写入模式下锁定的单一实体。要修改资源,线程必须首先获取互斥写锁。必须释放所有读锁之后,才允许使用互斥写锁。

1. 初始化和销毁:

#include <pthread.h>
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

同互斥量一样, 在释放读写锁占用的内存之前, 需要先通过pthread_rwlock_destroy对读写锁进行清理工作, 释放由init分配的资源.

2.加锁和解锁

读取读写锁中的锁 int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
读取非阻塞读写锁中的锁 int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
写入读写锁中的锁 int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
写入非阻塞读写锁中的锁 int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
解除锁定读写锁 int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

三、条件变量

假如某个线程需要等待系统处于某种状态下才能继续执行,Linux为了解决这种问题引入了条件变量这种线程同步对象,条件变量是用来通知共享数据状态信息的,等待条件变量总是返回锁住的互斥量,条件变量是与互斥量相关、也与互斥量保护的共享数据相关的信号机制。条件变量不提供互斥,需要一个互斥量来同步对共享数据的访问,这就是为什么在等待条件变量时必须指定一个互斥量。

1、创建和销毁条件变量

#include <pthread.h>
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
int pthread_cond_init(pthread_cond_t *restrict cond,const pthread_condattr_t *restrict attr);
int pthread_cond_destroy(pthread_cond_t *cond);

2、等待条件变量

#include <pthread.h>
int pthread_cond_timedwait(pthread_cond_t *restrict cond,pthread_mutex_t *restrict mutex,const struct timespec *restrict abstime);
int pthread_cond_wait(pthread_cond_t *restrict cond,pthread_mutex_t *restrict mutex);

两个函数的差别在于前者指定一个超时时间,在该时间内阻塞调用线程,并等待条件变量,如果规定时间内条件还没有发生,则函数返回。每个条件变量必须一个特定互斥量关联,当线程等待条件变量时,他必须将相关互斥量锁住。在阻塞线程之前,条件变量等待操作将解锁互斥量,而在重新返回线程之前,会在次锁住互斥量。

3、唤醒条件变量等待线程

#include <pthread.h>
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

pthread_cond_signal将会激活等待线程中的一个;pthread_cond_broadcast将会激活所有的线程。另外请注意这两个函数也需要互斥量来保护。

UNIX环境高级编程——线程同步之互斥锁、读写锁和条件变量(小结)的更多相关文章

  1. UNIX环境高级编程——线程同步之互斥量

    互斥量(也称为互斥锁)出自POSIX线程标准,可以用来同步同一进程中的各个线程.当然如果一个互斥量存放在多个进程共享的某个内存区中,那么还可以通过互斥量来进行进程间的同步. 互斥量,从字面上就可以知道 ...

  2. UNIX环境高级编程——线程同步之条件变量以及属性

    条件变量变量也是出自POSIX线程标准,另一种线程同步机制.主要用来等待某个条件的发生.可以用来同步同一进程中的各个线程.当然如果一个条件变量存放在多个进程共享的某个内存区中,那么还可以通过条件变量来 ...

  3. UNIX环境高级编程——线程同步之读写锁以及属性

    读写锁和互斥量(互斥锁)很类似,是另一种线程同步机制,但不属于POSIX标准,可以用来同步同一进程中的各个线程.当然如果一个读写锁存放在多个进程共享的某个内存区中,那么还可以用来进行进程间的同步, 互 ...

  4. Unix 环境高级编程---线程创建、同步、

    一下代码主要实现了linux下线程创建的基本方法,这些都是使用默认属性的.以后有机会再探讨自定义属性的情况.主要是为了练习三种基本的线程同步方法:互斥.读写锁以及条件变量. #include < ...

  5. UNIX环境高级编程——线程属性

    pthread_attr_t 的缺省属性值 属性 值 结果 scope PTHREAD_SCOPE_PROCESS 新线程与进程中的其他线程发生竞争. detachstate PTHREAD_CREA ...

  6. UNIX环境高级编程——线程和fork

    当线程调用fork时,就为子进程创建了整个进程地址空间的副本.子进程通过继承整个地址空间的副本,也从父进程那里继承了所有互斥量.读写锁和条件变量的状态.如果父进程包含多个线程,子进程在fork返回以后 ...

  7. UNIX环境高级编程——线程私有数据

    线程私有数据(Thread-specific data,TSD):存储和查询与某个线程相关数据的一种机制. 在进程内的所有线程都共享相同的地址空间,即意味着任何声明为静态或外部变量,或在进程堆声明的变 ...

  8. UNIX环境高级编程——线程

    线程包含了表示进程内执行环境必需的信息,其中包括进程中标示线程的线程ID.一组寄存器值.栈.调度优先级和策略.信号屏蔽字.errno变量以及线程私有数据. 进程的所有信息对该进程的所有线程都是共享的, ...

  9. UNIX环境高级编程——线程和信号

    每个线程都有自己的信号屏蔽字,但是信号的处理是进程中所有线程共享的.这意味着尽管单个线程可以阻止某些信号,但当线程修改了与某个信号相关的处理行为以后,所有的线程都必须共享这个处理行为的改变.这样如果一 ...

随机推荐

  1. Eclipse 一直不停 building workspace完美解决总结

    一.产生这个问题的原因多种1.自动升级 2.未正确关闭  3.maven下载lib挂起 等.. 二.解决总结(1).解决方法        方法1.修改eclipse启动文件 eclipse.ini ...

  2. random 模块

    import stringprint (random.random()) # 0-1之间选浮点数print (random.randint(0,99,))#0-99之间选任意整数print (rand ...

  3. 毕业回馈-89c51之定时器/计数器(Timer/Count)

    今天分享的是89c51系列单片机的内部资源定时器/计数器,在所有的嵌入式系统中都包含这两个内部功能. 首先先了解几个定时器/计数器相关的概念: •时钟周期:时钟周期 T 是时序中最小的时间单位,具体计 ...

  4. C语言关闭日志文件时忘了将日志文件全局变量指针置为NULL

    C语言写了一个write_log函数以写日志,写了一个close_log_file函数以关闭日志,声明了一个日志文件全局变量文件指针plogFile. write_log中首先判断plogFile是否 ...

  5. 判定程序员等级,HashMap就够了

    JDK1.8  HashMap源码分析 用到的符号: ^异运算:两个操作数相同,结果是;两个操作数不同,结果是1. &按位与:两个操作数都是1,结果才是1. 一.HashMap概述 在JDK1 ...

  6. Jmeter(一)_环境部署

    简介: Apache JMeter是100%纯JAVA桌面应用程序,被设计为用于测试CS/BS的软件.它可以用来测试静态和动态资源的性能,可用于模拟大量负载来测试一台服务器,网络或者对象的健壮性或者分 ...

  7. API得到Windows版本

    API得到Windows版本 /** * Windows Version * https://msdn.microsoft.com/en-us/library/windows/desktop/dn48 ...

  8. Java格式化时间

    Java格式化时间 将秒或者毫秒值格式化成指定格式的时间 效果图 工具类 工具类里我只列出了一种格式的格式化方式,可以根据自己的需求,修改"yyyy-MM-dd hh:mm:ss" ...

  9. Scala:输入输出

    http://blog.csdn.net/pipisorry/article/details/52902694 Scala基本输入输出 从屏幕上读取用户输入 有时候我们需要接收用户在屏幕输入的指令来处 ...

  10. 递归的神奇之处在于你会发现问题竟然解决了--解N皇后谜题有感

    看sicp看到8皇后谜题, 突然兴致来了,尝试独立解决(scheme代码的好处在于,即使你瞟了眼答案, 也不会有任何收获, 除了知道那儿有一坨神秘的括号和英文字符外但Python代码就不同了),成功了 ...