1、标准正交矩阵

假设矩阵Q有列向量q1,q2,...,qn表示,且其列向量满足下式:

若Q为方阵,由上面的式子则有

我们举例说明上述概念:

2、标准正交矩阵的好处

    上面我们介绍了标准正交矩阵,那么标准正交矩阵的用处在哪?下面以两方面来说明标准正交矩阵的用处:


求解Ax=b

    在前面文章《正交投影》中,有下式:

当矩阵A为标准正交矩阵Q时,由于正交矩阵与其转置的乘积为单位矩阵,则上式可以转化为:

可以发现,求x时不需要矩阵Q的逆,只需要知道转置即可,这样简化了计算。

求解投影矩阵

    在前面文章《正交投影》中,投影矩阵的通式可以表示为:

当矩阵A为标准正交矩阵Q时,由于正交矩阵与其转置的乘积为单位矩阵,则上式可以转化为:

这样就将投影矩阵简单化了。

3、Gram-Schmidt正交化

    任何复杂问题的求解都可以从简单的问题出发。聪明的数学家不会羞于考虑小问题,因为当最简单的情况弄得明明白白时,一般的形式就容易理解了。并且,简单的情况不仅帮我们发现一般的公式,而且还提供了一种便利的核查方法,看看我们是否犯下了愚蠢的错误。下面我们就从简单的二维情况讨论:

二维情况

    假设原来的矩阵为[a,b],a,b为线性无关的二维向量,下面我们通过Gram-Schmidt正交化使得矩阵A为标准正交矩阵:
    假设正交化后的矩阵为Q=[A,B],我们可以令A=a,那么我们的目的根据AB=I来求B。如下面的二维情况所示,B的方向与A成90度。图中还表明,B可以表示为b向量与b向量在a上的投影的误差向量。由《正交投影》中的结论可知,有如下关系成立:

三维情况

     假设原来的矩阵为[a,b,c],a,b,c为线性无关的二维向量,正交化后的矩阵为Q=[A,B,C],我们可以令A=a,则可以根据二维情况得到如下猜想:

上式显然满足AB=0,AC=0,BC=0。

下面我们用实例说明正交化的过程:
假设矩阵为[a,b]

则由二维情况的结论可知:

把具体数值代入得:

经过归一化得:

Q即是我们经过正交化后的正交矩阵。

原文:http://blog.csdn.net/tengweitw/article/details/41775545

作者:nineheadedbird

【线性代数】标准正交矩阵与Gram-Schmidt正交化的更多相关文章

  1. 线性代数之——正交矩阵和 Gram-Schmidt 正交化

    这部分我们有两个目标.一是了解正交性是怎么让 \(\hat x\) .\(p\) .\(P\) 的计算变得简单的,这种情况下,\(A^TA\) 将会是一个对角矩阵.二是学会怎么从原始向量中构建出正交向 ...

  2. 施密特正交化 GramSchmidt

    施密特正交化 GramSchmidt 施密特正交化的原名是 Gram–Schmidt process,是由Gram和schmidt两个人一起发明的,但是后来因为施密特名气更大,所以该方法被简记为施密特 ...

  3. PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)

    前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...

  4. OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的!

    OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的! 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致&q ...

  5. Deep Learning(花书)教材笔记-Math and Machine Learning Basics(线性代数拾遗)

    I. Linear Algebra 1. 基础概念回顾 scalar: 标量 vector: 矢量,an array of numbers. matrix: 矩阵, 2-D array of numb ...

  6. 浅谈压缩感知(十九):MP、OMP与施密特正交化

    关于MP.OMP的相关算法与收敛证明,可以参考:http://www.cnblogs.com/AndyJee/p/5047174.html,这里仅简单陈述算法流程及二者的不同之处. 主要内容: MP的 ...

  7. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  8. PCA主成份分析学习记要

    前言 主成份分析,简写为PCA(Principle Component Analysis).用于提取矩阵中的最主要成分,剔除冗余数据,同时降低数据纬度.现实世界中的数据可能是多种因数叠加的结果,如果这 ...

  9. 矩阵分解---QR正交分解,LU分解

    相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...

随机推荐

  1. [端口扫描]S扫描器跨网段扫描

    最近看了下端口扫描,用了几款扫描器,nmap啊,x-sacn等.之前很少关注安全方面的东西,所以也比较菜. 其中有一款叫做 "S扫描器"的,扫描速度非常快,可以大网段的扫描,几十万 ...

  2. 自制 Python小工具 将markdown文件转换成Html文件

    今天看到了一个Python库,名为markdown.瞬间就给了我一个灵感,那就是制作一个将markdown文件转换成html文件的小工具. 我的实验环境 操作系统: Windows 7 64位 旗舰版 ...

  3. Servlet之文件上传

    上传表单中的注意事项: 表单 method 属性应该设置为 POST 方法,不能使用 GET 方法 表单 enctype 属性应该设置为multipart/form-data 下面的实例是借助于com ...

  4. 【Unity Shaders】Alpha Test和Alpha Blending

    写在前面 关于alpha的问题一直是个比较容易摸不清头脑的事情,尤其是涉及到半透明问题的时候,总是不知道为什么A就遮挡了B,而B明明在A前面.这篇文章就总结一下我现在的认识~ Alpha Test和A ...

  5. 【java集合框架源码剖析系列】java源码剖析之HashMap

    前言:之所以打算写java集合框架源码剖析系列博客是因为自己反思了一下阿里内推一面的失败(估计没过,因为写此博客已距阿里巴巴一面一个星期),当时面试完之后感觉自己回答的挺好的,而且据面试官最后说的这几 ...

  6. JS 可变参数

     JS可变参数的方法不需要参数,同时,我们应该注意在写JS文件的时候避免定义arguments变量. <html> <head> <title>Javascri ...

  7. 使用jquery获取radio的值

     使用jquery获取radio的值,最重要的是掌握jquery选择器的使用,在一个表单中我们通常是要获取被选中的那个radio项的值,所以要加checked来筛选,比如有以下的一些radio项: ...

  8. AnimatedPathView实现自定义图片标签

    老早用过小红书app,对于他们客户端笔记这块的设计非常喜欢,恰好去年在小红书的竞争对手公司,公司基于产品的考虑和产品的发展,也需要将app社交化,于是在社区分享这块多多少少参照了小红书的设计,这里面就 ...

  9. 并发编程(三): 使用C++11实现无锁stack(lock-free stack)

    前几篇文章,我们讨论了如何使用mutex保护数据及使用使用condition variable在多线程中进行同步.然而,使用mutex将会导致一下问题: 等待互斥锁会消耗宝贵的时间 - 有时候是很多时 ...

  10. javascript setinterval 正确的语法

    前几天我用setinterval 写了一个小程序,这个setinterval是用来干什么的我就不解释了. 写的方法在其它的浏览器里都能用,后来测试组的同事拿去一测就出了问题.因为她们爱用360,还有I ...