一、什么是多基因风险评分

传统的GWAS研究只计算单个SNP位点与表型之间的关联性,再用Bonferroni校正,通过给定的阈值,筛选出显著的SNP位点。

这样会存在两个问题,第一、Bonferroni校正非常严格,很多对表型也有贡献的位点会因为达不到阈值而被过滤掉。第二、单个位点对表型的解释度是很低的,尤其是对于高血压这种多基因控制的表型,用一个个单独的位点解释高血压患病风险,就显得很单薄。

因此,开发一个能让我们直观的感受,患某种疾病的风险多高的工具,显然是非常有必要的。

​为了更好理解多基因风险得分(PRS)的概念,我画了一个图,假如翠花的多基因风险评分处于第二个柱形图那里,那么我们就会认为翠花得某种疾病的风险比普通人要低。

二、多基因风险得分的公式

多基因风险得分的公式如下:

PT表示P值的阈值;

i表示符合该阈值下的SNP的数量,i = 1, 2, ..., m;

βi表示SNP的效应值,在GWAS当中,如果是线性表型,该值为β,如果是二元表型,该值为OR;

Gi,j 表示SNP的基因型,分别用{0,1,2}显示;

三、怎么计算多基因风险评分

目前计算PRS的主流软件有PRSice,截止目前为止,引用率有366次。

下面详细讲讲如何应用PRSice计算多基因风险得分。

1、PRSice安装

进入下载链接。选择所需的系统,以下安装以Linux系统为例。

wget https://github.com/choishingwan/PRSice/releases/download/2.1.11/PRSice_linux.zip

  

2、解压PRSice

unzip PRSice_linux.zip

  

解压完以后,出现以下几个测试文件:

3、测试是否安装成功

输入命令

./PRSice_linux

  

如果安装成功,则会出现如下的界面:

4、使用PRSice计算多基因风险得分(PRS)

对于二元表型,使用以下代码

Rscript PRSice.R --dir . --prsice ./PRSice_linux --base TOY_BASE_GWAS.assoc --target TOY_TARGET_DATA --thread 1 --stat OR --binary-target T

  

对于连续型变量的表型,使用以下代码

Rscript PRSice.R --dir . --prsice ./PRSice_linux --base TOY_BASE_GWAS.assoc --target TOY_TARGET_DATA --thread 1 --stat BETA --beta --binary-target F

  

四、生成文件结果解读

跑完上面的命令后会生成以下文件:

PRSice.best,PRSiceBARPLOT.png,PRSiceHIGH-RES_PLOT.png,PRSice.log ,PRSice.prsice,PRSice.summary

下面一个个的讲解这些文件包含哪些重要的信息。

PRSice.prsice文件

PRSice.prsice的文件格式如下:

PRSice.prsice文件包含:在给定不同阈值的P值以后,符合要求的SNP数量(Num_SNP),SNP的解释度(R2),回归系数

PRSice.best文件

PRSice.best文件格式如下:

文件包含FID,IID,是否回归,PRS值。这个文件计算的是每个个体最优的PRS值。

PRSice.summary文件

PRSice.summary文件内容如下:

包含表型,P的阈值,PRS的解释方差,所有变量的解释方差,协变量的解释方差,回归系数,P值,该阈值下的SNP数量。 这个文件给出的是该表型下最优的模型。

PRSice_BARPLOT.png图片

PRSice柱状图显示的是不同P值阈值(横轴)下的多基因风险得分(纵轴),柱状图最高的点表示模型最优,如该图显示的是P值阈值为0.4463时,模型最优,该表型的多基因风险得分为0.052,P值为4.7*10-18

PRSiceHIGH-RESPLOT.png图片

这张图显示的是,在该模型下,最佳的P值阈值为绿色最高点处,此时P值的阈值为0.4463

参考文献:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605113/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1987352/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912837/

GWAS后续分析:多基因风险评分(Polygenic Risk Score)的计算的更多相关文章

  1. GWAS后续分析:LocusZoom图的绘制

    LocusZoom图几乎是GWAS文章的必备图形之一,其主要作用是可以快速可视化GWAS找出来的信号在基因组的具体信息:比如周围有没有高度连锁的位点,高度连锁的位点是否也显著. 下面是locuszoo ...

  2. 数据分析 - 美国金融科技公司Prosper的风险评分分析

    数据分析 - 美国金融科技公司Prosper的风险评分分析 今年Reinhard Hsu觉得最有意思的事情,是参加了拍拍贷第二届魔镜杯互联网金融数据应用大赛.通过"富爸爸队",认识 ...

  3. Methods for follow-up research of exome analysis:外显子后续分析研究思路总结

    外显子后续分析研究思路一般有以下几种(Methods for follow-up research of exome analysis): 1.对突变频率.突变类型.突变方式进行统计分析 Mutati ...

  4. GWAS条件分析(conditional analysis)

    一.为什么要做GWAS的条件分析(conditional analysis) 我们做GWAS的时候,经常扫出一堆显著的信号,假设rs121是我们扫出来与某表型最显著相关的位点(P=1.351e-36) ...

  5. QQ快速登录协议分析以及风险反思

    前言 众所周知,Tencent以前使用Activex的方式实施QQ快速登录,现在快速登录已经不用控件了.那现在用了什么奇葩的方法做到Web和本地的应用程序交互呢?其实猜测一下,Web和本地应用进行交互 ...

  6. 《深入理解Spark-核心思想与源码分析》(六)第六章计算引擎

    RDD是Spark对各类数据计算模型的统一抽象,被用于迭代计算过程以及任务输出结果的缓存读写. 在所有MapReduce框架中,shuffle是连接map任务和reduce任务的桥梁.shuffle性 ...

  7. LC滤波电路分析,LC滤波电路原理及其时间常数的计算

    LC滤波器具有结构简单.设备投资少.运行可靠性较高.运行费用较低等优点,应用很广泛. LC滤波器又分为单调谐滤波器.高通滤波器.双调谐滤波器及三调谐滤波器等几种. LC滤波主要是电感的电阻小,直流损耗 ...

  8. 全基因组关联分析学习资料(GWAS tutorial)

    前言 很多人问我有没有关于全基因组关联分析(GWAS)原理的书籍或者文章推荐. 其实我个人觉得,做这个分析,先从跑流程开始,再去看原理. 为什么这么说呢,因为对于初学者来说,跑流程就像一个大黑洞,学习 ...

  9. GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing

    现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...

随机推荐

  1. 海康&大华&DSS视频拉流-RTSP转RTMP多媒体播放技术

    海康&大华&DSS获取RTSP 实时流 海康:rtsp://[username]:[password]@[ip]:[port]/[codec]/[channel]/[subtype]/ ...

  2. [转载]css菜鸟之HTML 中块级元素设置 height:100% 的实现

    HTML 中块级元素设置 height:100% 的实现 当你设置一个页面元素的高度(height)为100%时,期望这样元素能撑满整个浏览器窗口的高度,但大多数情况下,这样的做法没有任何效果. 为什 ...

  3. 你不可不知的Java引用类型之——Reference源码解析

    定义 Reference是所有引用类型的父类,定义了引用的公共行为和操作. reference指代引用对象本身,referent指代reference引用的对象,下文介绍会以reference,ref ...

  4. Win10中Vue.js的安装和项目搭建

    一. 提前准备工作 1.Node.js环境 2.Windows10 3.npm(前端包管理工具) 4.webpack(前端资源加载/打包工具) 二. 开始安装 1..下载并安装Node.js 下载地址 ...

  5. .NET Core 学习笔记3——EF Core

    EF Core (EntityFramework Core)是实体关系映射(O/RM)数据库访问框架.这个模式的好处就是让开发人员可以用对象模型来操作数据库,这是一种对开发人员较为友好的方式. O/R ...

  6. oracle 当前年到指定年的年度范围求取

    如下面公式所示,求取2015到当前年(2018)的年度范围,当前年是由系统获取的,用到了sysdate和函数to_char,to_date. 当然,当前年也可以换成指定年份 SELECT TO_CHA ...

  7. Windows Server 2008 R2 Enterprise x64 部署 nginx、tomcat、mysql

    部署nginx nginx主要做反向代理用,可以单独部署到其它机器上,这里nginx和tomcat部署在同一台机器上. 下载nginx-1.14.1.zip,并解压到目标目录,打开cmd进入到解压后的 ...

  8. ios copy和strong,浅拷贝和深拷贝

    copy@property (nonatomic, copy) NSString *name;self.name = mutableString;这时,name对mutableString一个深拷贝, ...

  9. 08 Django REST Framework 解决前后端分离项目中的跨域问题

    01-安装模块 pip install django-cors-headers 02-添加到INSTALL_APPS中 INSTALLED_APPS = ( ... 'corsheaders', .. ...

  10. Docker 核心技术之容器

    什么是容器 容器(Container) 容器是一种轻量级.可移植.并将应用程序进行的打包的技术,使应用程序可以在几乎任何地方以相同的方式运行 Docker将镜像文件运行起来后,产生的对象就是容器.容器 ...