题目描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入输出格式

输入格式:

输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。

输出格式:

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

输入输出样例

输入样例#1:

3
1 2 9
输出样例#1:

15

说明

对于30%的数据,保证有n<=1000:

对于50%的数据,保证有n<=5000;

对于全部的数据,保证有n<=10000。

合并果子

这显然很水,但是怎么做就是每个人的不同思路了

这里奉上的是有关优先队列【好像算是堆的应用】(其实有些时候我也分不清)的解法

我们可以将这个问题换一个角度考虑,给定n个叶结点,每个结点都有一个权值w【i】,将它们中两个合并为树,假设每个结点从根到它的距离是d【i】,使得最终∑(wi*di)最小。

这样就有更好的解法

(1)从森林里取两个权和最小的子树

(2)将他们的权值和相加,得到新的子树,并把原来的子树删掉,将新的子树插入到森林之中

(3)连续重复(1)和(2),直到森林里只留下一棵树为止

代码如下:

#include<bits/stdc++.h>
using namespace std;
int n;
priority_queue<int,vector<int>,greater<int> >h;
void work()
{
int i,x,y,ans=;
cin>>n;
for(int i=;i<=n;i++)
{
cin>>x;
h.push(x);
}
for(int i=;i<n;i++)
{
x=h.top();h.pop();
y=h.top();h.pop();
ans+=x+y;
h.push(x+y);
}
cout<<ans;
}
int main()
{
work();
}

【洛谷P1090 合并果子】的更多相关文章

  1. 堆学习笔记(未完待续)(洛谷p1090合并果子)

    上次讲了堆,别人都说极其简单,我却没学过,今天又听dalao们讲图论,最短路又用堆优化,问懂了没,底下全说懂了,我???,感觉全世界都会了堆,就我不会,于是我决定补一补: ——————来自百度百科 所 ...

  2. 洛谷 P1090合并果子【贪心】【优先队列】

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  3. 洛谷P1090 合并果子

    合并果子 题目链接 这个只能用于结构体中 struct item { int val; friend bool operator < (item a,item b) { return a.val ...

  4. [NOIP2004] 提高组 洛谷P1090 合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  5. 洛谷P1090 合并果子【贪心】

    在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可以看出,所 ...

  6. 洛谷P1090——合并果子(贪心)

    https://www.luogu.org/problem/show?pid=1090 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合 ...

  7. 洛谷 p1090 合并果子

    https://www.luogu.org/problemnew/show/P1090 优先队列的经典题目 体现了stl的优越性 #include<bits/stdc++.h> using ...

  8. Java实现 洛谷 P1090 合并果子

    import java.io.BufferedInputStream; import java.util.Arrays; import java.util.Scanner; public class ...

  9. 代码源 每日一题 分割 洛谷 P6033合并果子

    ​ 题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...

随机推荐

  1. jqGrid 常用 总结 -1

    这篇文章是因为,我们在做的后台项目,里面有大量的表格统计,这个不可能自己手写,所以其中的表格使用的是jqgrid. 这个插件其实使用起来还是不错的,里面有很多的功能很赞.这篇博客就是自己的的一个记录, ...

  2. 03 入门 - 安装MVC 5和创建应用程序

    目录索引:<ASP.NET MVC 5 高级编程>学习笔记 本篇内容: 1. ASP.NET MVC 5的软件需求 2. 安装ASP.NET MVC 5 1)安装MVC 5开发组件 2)服 ...

  3. js 控制随机数生成概率

    基本思路:把Math.random()生成的数看着百分比,然后定义每个整数值取值范围. 'use strict'; export default class GL { /** * 构造函数 * @pa ...

  4. Dynamics 365中显示格式为URL的字段极少部分URL值录入了不显示怎么回事?

    微软动态CRM专家罗勇 ,回复318或者20190315可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 对于如下类型的字段, ...

  5. ThreadLocal说明

    ThreadLocal说明 类ThreadLocal主要为了解决每个线程绑定自己的私有的值,可以吧ThreadLocal比如可全部存放的数据,每个线程都可以在里面存放自己的数据,并且不会和其他线程冲突 ...

  6. 常见的异步方式async 和 await

    之前研究过c#的async和await关键字,幕后干了什么,但是不知道为什么找不到相关资料了.现在重新研究一遍,顺便记录下来,方便以后查阅. 基础知识 async 关键字标注一个方法,该方法返回值是一 ...

  7. 为什么不能在 body 标签的前面的 script 标签中定义 JS 全局变量?

    <!DOCTYPE html> <!-- 为什么不能在 body 标签的前面的 script 标签中定义 JS 全局变量? 在全局环境下的代码就是在页面加载阶段从上到下一边加载一边执 ...

  8. Linux学习历程——Centos 7 chown命令

    一.命令介绍 Linux是多人多工操作系统,所有的文件皆有拥有者.利用 chown 将指定文件的拥有者改为指定的用户或组, 用户可以是用户名或者用户ID:组可以是组名或者组ID:文件是以空格分开的要改 ...

  9. vtop工具使用分析

    vtop工具可以为esxtop提供图形界面,并且可以显示实时统计数据,对于我们监控esxi主机的需求匹配度很高,同时,相对于vcenter中的数据统计选项实时性更高,操作简便,可作为工作使用 为便于我 ...

  10. 订制rpm包到Centos7镜像中

    本文以CentOS 7.4 最小化镜像(CentOS-7-x86_64-Minimal-1708.iso)为模版 要达到的目的: 1.订制所需的rpm软件包集成到iso文件中 2.制作完成的ISO全自 ...