剑指Offer——分治算法

基本概念

在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

基本思想及策略

分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

分治法适用的情况

分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决;

2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;

3) 利用该问题分解出的子问题的解可以合并为该问题的解;

4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题;

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

分治法的基本步骤

分治法在每一层递归上都有三个步骤:

step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;

step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题

step3 合并:将各个子问题的解合并为原问题的解。

它的一般的算法设计模式如下:

Divide-and-Conquer(P)

1. if |P|≤n0

2. then return(ADHOC(P))

3. 将P分解为较小的子问题 P1 ,P2 ,…,Pk

4. for i←1 to k

5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi

6. T ← MERGE(y1,y2,…,yk) △ 合并子问题

7. return(T)

其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,…,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,…,Pk的相应的解y1,y2,…,yk合并为P的解。

分治法的复杂性分析

一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:

T(n)= k T(n/m)+f(n)

通过迭代法求得方程的解:

递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。

可使用分治法求解的一些经典问题

(1)二分搜索

(2)大整数乘法

(3)Strassen矩阵乘法

(4)棋盘覆盖

(5)合并排序

(6)快速排序

(7)线性时间选择

(8)最接近点对问题

(9)循环赛日程表

(10)汉诺塔

依据分治法设计程序时的思维过程

实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。

1、一定是先找到最小问题规模时的求解方法

2、然后考虑随着问题规模增大时的求解方法

3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。

美文美图

剑指Offer——分治算法的更多相关文章

  1. 剑指Offer——动态规划算法

    剑指Offer--动态规划算法 什么是动态规划? 和分治法一样,动态规划(dynamic programming)是通过组合子问题而解决整个问题的解. 分治法是将问题划分成一些独立的子问题,递归地求解 ...

  2. 剑指Offer——回溯算法解迷宫问题(java版)

    剑指Offer--回溯算法解迷宫问题(java版)   以一个M×N的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍.设计程序,对任意设定的迷宫,求出从入口到出口的所有通路.   下面我们来详细讲一 ...

  3. 剑指Offer——回溯算法

    剑指Offer--回溯算法 什么是回溯法 回溯法实际是穷举算法,按问题某种变化趋势穷举下去,如某状态的变化用完还没有得到最优解,则返回上一种状态继续穷举.回溯法有"通用的解题法"之 ...

  4. 剑指Offer——贪心算法

    剑指Offer--贪心算法 一.基本概念 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解.虽然贪心算法不能对 ...

  5. 《剑指offer》算法题第十二天

    今天是<剑指offer>算法题系列的最后一天了,但是这个系列并没有包括书上的所有题目,因为正如第一天所说,这些代码是在牛客网上写并且测试的,但是牛客网上并没有涵盖书上所有的题目. 今日题目 ...

  6. 《剑指offer》算法题第一天

    按照个人计划,从今天开始做<剑指offer>上面的算法题,练习平台为牛客网,上面对每道题都有充分的测试实例,感觉还是很不错的.今天下午做了四道题,分别为: 1. 二叉树的深度(书55题) ...

  7. JS数据结构与算法 - 剑指offer二叉树算法题汇总

    ❗❗ 必看经验 在博主刷题期间,基本上是碰到一道二叉树就不会碰到一道就不会,有时候一个下午都在搞一道题,看别人解题思路就算能看懂,自己写就呵呵了.一气之下不刷了,改而先去把二叉树的基础算法给搞搞懂,然 ...

  8. 《剑指offer》算法题第十天

    今日题目: 数组中的逆序对 两个链表的第一个公共节点 数字在排序数组中出现的次数 二叉搜索树的第k大节点 字符流中第一个不重复的字符 1. 数组中的逆序对 题目描述: 在数组中的两个数字,如果前面一个 ...

  9. 《剑指offer》算法题第十一天

    今日题目: 滑动窗口的最大值 扑克牌中的顺子 圆圈中最后剩下的数字 求1+2+3+...+n 不用加减乘除做加法 构建乘积数组 今天的题目比较有意思,可以学到很多知识,包括第1题中的数据结构——双向队 ...

随机推荐

  1. [USACO07NOV]牛继电器Cow Relays

    题目描述 给出一张无向连通图,求S到E经过k条边的最短路. 输入输出样例 输入样例#1: 2 6 6 4 11 4 6 4 4 8 8 4 9 6 6 8 2 6 9 3 8 9 输出样例#1: 10 ...

  2. ●BZOJ 3529 [Sdoi2014]数表

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3529 题解: 莫比乌斯反演. 按题目的意思,令$f(i)$表示i的所有约数的和,就是要求: ...

  3. ●BZOJ 1272 [BeiJingWc2008]Gate Of Babylon

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1272 题解: 容斥,Lucas定理本题的容斥考虑类似 [BZOJ 1042 [HAOI200 ...

  4. SPOJ - DISUBSTR 多少个不同的子串

    694. Distinct Substrings Problem code: DISUBSTR   Given a string, we need to find the total number o ...

  5. ORACLE 启动过程

    1 STARTUP NOMOUNT 1.读取环境变量下dbs目录下的参数文件(spfile/pfile) 查找参数文件的顺序如上面列表的,读取优先级: spfilechongshi.ora > ...

  6. 使用PL/SQL Developer连接远程DB(本机不安装Oracle客户端)

    本文内容亲测可行环境:    服务端:centos6.7 ,oracle 11g r2 ,动态注册,监听端口号:1521    用户端:win7 ,没有安装ORACLE及其客户端 准备文件:plsql ...

  7. Spring中的InitializingBean接口的使用

    InitializingBean接口为bean提供了初始化方法的方式,它只包括afterPropertiesSet方法,凡是继承该接口的类,在初始化bean的时候都会执行该方法. 测试,如下: imp ...

  8. 如何在Eclipse中快速添加main方法

    在创建类时自动添加,只需要勾选"public static void main(String[]   args)"

  9. Java阻塞队列的实现

    阻塞队列与普通队列的区别在于,当队列是空的时,从队列中获取元素的操作将会被阻塞,或者当队列是满时,往队列里添加元素的操作会被阻塞.试图从空的阻塞队列中获取元素的线程将会被阻塞,直到其他的线程往空的队列 ...

  10. ubuntu15.10 安装 virtualbox5.0

    首先安装依赖包.ubuntu15.01安装的时候会出现这个错误: virtualbox-); however: Package libvpx1 is not installed 而且sudo apt- ...