bzoj 2339: [HNOI2011]卡农
Description

Solution
比较难想....
我们先考虑去掉无序的这个条件,改为有序,最后除 \(m!\) 即可
设 \(f[i]\) 表示前\(i\)个合法集合的方案数
明确一点:
如果前\(i-1\)个集合已经确定,并且前\(i\)个是合法的,那么第\(i\)就是确定的,所以是一一对应的关系,如果不考虑重复和空集的情况,那么总方案数就是 \(A_{2^{n}-1}^{i-1}\)
考虑去掉不合法的:
1.当前集合为空集,方案数为 \(f[i-1]\)
2.有两个集合相同,那么去掉这两个集合的方案数是 \(f[i-2]\),由于重复的那个位置可以取 \(i-1\) 个位置,且只与这个集合重复,而不与其他集合重复,所以两个集合可以取 \(2^{n}-1-(i-2)\) 种
然后直接递推即可,\(log\)求逆的话,复杂度就是 \(O(n*logn)\) 的
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+5,mod=1e8+7;
int qm(int x,int k){
int sum=1;
while(k){
if(k&1)sum=1ll*sum*x%mod;
x=1ll*x*x%mod;k>>=1;
}
return sum;
}
int f[N],Fac[N];
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int n,m,x,t,jc=1;
cin>>n>>m;
t=qm(2,n);Fac[1]=x=(t-1+mod)%mod;
Fac[0]=1;
for(int i=1;i<=m;i++)
jc=1ll*i*jc%mod,Fac[i]=1ll*Fac[i-1]*x%mod,x=(x-1+mod)%mod;
f[0]=1;f[1]=0;
for(int i=2;i<=m;i++){
f[i]=Fac[i-1];
f[i]=(f[i]-f[i-1]-1ll*f[i-2]*(i-1)%mod*(t-1-(i-2)))%mod;
}
if(f[m]<0)f[m]+=mod;
f[m]=1ll*f[m]*qm(jc,mod-2)%mod;
cout<<f[m]<<endl;
return 0;
}
bzoj 2339: [HNOI2011]卡农的更多相关文章
- BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)
题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(S ...
- 2339: [HNOI2011]卡农
Description 首先去除顺序不同算一种的麻烦,就是最后答案除以总片段数\(2^m-1\) 设\(f_i\)表示安排\(i\)个片段的合法种类 那么对于任何一个包含\(i-1\)个片段的序列(除 ...
- bzoj2339[HNOI2011]卡农 dp+容斥
2339: [HNOI2011]卡农 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 842 Solved: 510[Submit][Status][ ...
- [BZOJ2339][HNOI2011]卡农
[BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...
- BZOJ2339[HNOI2011]卡农——递推+组合数
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...
- P3214 [HNOI2011]卡农
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...
- 【BZOJ2339】[HNOI2011]卡农 组合数+容斥
[BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...
- [HNOI2011]卡农
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农 题解
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
随机推荐
- C语言程序设计第四次作业——选择结构(2)
Deadline: 2017-11-5 22:00 一.学习要点 掌握switch语句 掌握字符常量.字符串常量和字符变量 掌握字符型数据的输入输出 二.实验内容 完成PTA中选择结构(2)的所有题目 ...
- 一些琐碎的C/C++知识点
1. C++ 数组作为函数参数 在C/C++中,当数组作为函数的参数进行传递时,数组就自动退化为同类型的指针.(在32位系统中,对任意指针求sizeof结果为4) 2. C++ 中const的用法总结 ...
- 【评分】集美大学软件工程1413班工程项目管理个人作业2——APP案例分析
[评分]个人作业2--APP案例分析 作业要求 作业地址及完成情况 博文要求 通过分析你选中的产品,结合阅读<构建之法>,写一篇随笔,包含下述三个环节的所有要求. 第一部分 调研, 评测 ...
- 冲刺NO.8
Alpha冲刺第八天 站立式会议 项目进展 项目稳步进行,项目的基础部分如基本信息管理,信用信息管理等部分已相对比较完善. 问题困难 技术困难在短期内很难发生质的变化,而本项目由于选择了队员不太熟悉的 ...
- python性能分析--cProfile
Python标准库中提供了三种用来分析程序性能的模块,分别是cProfile, profile和hotshot,另外还有一个辅助模块stats.这些模块提供了对Python程序的确定性分析功能,同时也 ...
- Python内置函数(58)——input
英文文档: input([prompt]) If the prompt argument is present, it is written to standard output without a ...
- Mego开发文档 - 事务
事务 事务允许以原子方式处理多个数据库操作.如果事务已提交,则所有操作都已成功应用于数据库.如果事务回滚,则没有任何操作应用于数据库. 默认行为 默认情况下,如果数据库提供程序支持事务,则单次的提交操 ...
- mosquitto验证client互相踢
cleint11A订阅topic#################################################### server发送topic消息 ############### ...
- Swagger: 一个restful接口文档在线生成+功能测试软件
一.什么是 Swagger? Swagger 是一款RESTFUL接口的文档在线自动生成+功能测试功能软件.Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 ...
- istio入门(04)istio的helloworld-部署构建
参考链接: https://zhuanlan.zhihu.com/p/27512075 安装Istio目前仅支持Kubernetes,在部署Istio之前需要先部署好Kubernetes集群并配置好k ...