题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=4318
题解:

期望dp
如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就好解决了。

定义g[i]表示以1位置结尾的连续1的长度的期望。
转移显然:g[i]=p[i]*(g[i]+1)
然后定义h[i]表示以1位置结尾的连续1的长度的平方的期望
由于(x+1)^2=x^2+2x+1,
所以h[i]=p[i]*(h[i-1]+2*g[i-1]+1)

最后定义f[i]表示1~i这个区间期望能得到的分数,
分为此时i位置得到1和得到0两种情况:
得到1,由于(x+1)^3=x^3+3*x^2+3x+1 那么贡献为:p[i]*(f[i-1]+3*h[i-1]+3*g[i-1]+1)
得到0,那么直接为前面的期望得分,贡献为(1-p[i])*f[i-1]
所以f[i]的转移为:f[i]=(得到1)p[i]*(f[i-1]+3*h[i-1]+3*g[i-1]+1)+(得到0)(1-p)*f[i-1];

.....................................................................

==,难道没有感觉这个f[i]的转移有一丝丝诡异么?
先看看这个错的做法,
多了一个d[i],表示以i结尾形成的连续1的长度的3次方的期望。
那么其转移类似g和h的转移:
d[i]=p[i]*(d[i-1]+3*h[i-1]+3*g[i-1]+1)
然后再去求得f[i],同样地分为当前第i位得到1和得到0两种情况:
f[i]=(得到1)d[i]+(得到0)(1-p[i])*f[i-1]

乍一看似乎没问题,但是在(得到1)那里却出了问题:
f[i]表示的是1~i这个区间期望能够得到的分数,
但是在(得到1)这个转移这里,我们却只考虑了以i结尾的期望的那段1的贡献,然而其它部分的贡献就没有转移过来。
这也就是这个做法得到的答案比正确答案小的原因。
(可以强行把之前的贡献再加进来么?233,我反正加不来。。。)

.......................................................................

现在再反过来看看之前正确的f[i]的求法(没有d[i]数组的那个做法)
f[i]=(得到1)p[i]*(f[i-1]+3*h[i-1]+3*g[i-1]+1)+(得到0)(1-p)*f[i-1];

显然(得到0)的那个转移没有问题。

那么我们来想想(得到1)的那么那个转移是如何解决掉那个错误做法出现的问题的。
由于f[i-1]表示的是区间1~i-1的期望得分,
那么我们就可以把f[i-1]看成是由两个部分组成的:
一个部分是以i-1结尾的期望的那段连续的1造成的贡献A(一个长度的3次方的期望),另一部分则是其它部分的贡献B:
所以(得到1)这个转移可以看成是:p[i]*(B+A+3*h[i-1]+3*g[i-1]+1),
显然,后面的A+3*h[i-1]+3*g[i-1]+1计算的就是以i结尾形成的连续1的长度的3次方的期望,
而B则是其它部分的贡献。
所以就是这样巧妙地把新的贡献和其它部分的贡献都统计进了f[i]里面。

以上就是个人的见解。

代码:

#include<bits/stdc++.h>
#define MAXN 100005
using namespace std;
double g[MAXN],h[MAXN],f[MAXN],p;
int N;
int main(){
ios::sync_with_stdio(0);
cin>>N;
for(int i=1;i<=N;i++){
cin>>p;
g[i]=p*(g[i-1]+1);
h[i]=p*(h[i-1]+2*g[i-1]+1);
f[i]=p*(f[i-1]+3*h[i-1]+3*g[i-1]+1)+(1-p)*f[i-1];
}
cout<<fixed<<setprecision(1)<<f[N]<<endl;
return 0;
}

  

●BZOJ 4318 OSU!的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. BZOJ 4318 OSU!(概率DP)

    题意 osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串.在 ...

  3. bzoj 4318 OSU! - 动态规划 - 概率与期望

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  4. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  5. BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP

    这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...

  6. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  7. bzoj 4318 OSU!

    期望dp. 考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0.求以每一位结尾的全为1的后缀长度的期望. 递推就好了. l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i] ...

  8. BZOJ 4318: OSU! [DP 概率]

    传送门 题意:变成了告诉每个操作的成功概率,并且得分是三次方 一样....分别维护$x,\ x^2,\ x^3$的期望就行了 注意$x^3$是我们最终求的得分,即使失败得分也要累加上之前的 #incl ...

  9. bzoj 4318 OSU 概率期望dp

    可以发现:f[i]转移到f[i+1]只和最后一串1的长度和平方有关, 因为如果新加的位置是1,贡献就是(x+1)^3-x^3=3x^2+3x+1,否则为0: 所以对于每一个位置,处理出期望的f,x和x ...

随机推荐

  1. C语言博客作业--数组

    一.PTA实验作业 题目1.求整数序列中出现次数最多的数 1.本题PTA提交列表 2.设计思路 定义整形变量n,max,count分别表示整数个数,出现次数最大值,出现次数.定义循环变量i,j. 输入 ...

  2. python clock装饰器 计算函数执行时间,执行结果及传入的参数

    import time import functools def clock(func): @functools.wraps(func)#还原被装饰函数的__name__和__doc__属性 def ...

  3. STL常用整理

    S T L Sting: << 判断拼音序 size length 字符串长度 str[n] 代表字符串中的一个字符 可用作左值 string::size_type 用于表示字符串长度计量 ...

  4. 配置SpringAop时需要用到的AspectJ表达式

    Aspectj切入点语法定义 在使用spring框架配置AOP的时候,不管是通过XML配置文件还是注解的方式都需要定义pointcut"切入点" 例如定义切入点表达式  execu ...

  5. Vim 中文社区:期待你的加入

    我们的愿景 Vim 中文社区一直比较零散,缺少凝聚力,现有的一些群经常也是水的可以的,讨论各种无关紧要的内容,于是导致很大一部分人,将这些群丢入了群助手,渐渐地他们也淡出了 vim 中文社区. 而我理 ...

  6. __all__

    相信很多人第一次见到这个__all__都很好奇,他有什么作用 那他到底有什么作用呢? 先上代码 from scrapy.utils.reqser import request_to_dict, req ...

  7. Mego开发文档 - 数据属性生成值

    数据属性生成值 该功能用于在数据插入或更新时为指定属性生成期望的值,Mego提供了非常灵活的实现方式以满足各种数据提交时的自动赋值问题. 生成值目的及模式 在Mego中生成值的目的一定是插入数据或更新 ...

  8. linux下的Shell编程(5)循环

    Shell Script中的循环有下面几种格式: while [ cond1 ] && { || } [ cond2 ] -; do - done for var in -; do - ...

  9. NHibernate与IbatisNet的简单比较

    NHibernate是当前最流行的Java O/R mapping框架Hibernate的移植版本,当前版本是1.0 rc-1.它出身于sf.net..IbatisNet是另外一种优秀的Java O/ ...

  10. Bellman-Ford算法的改进---SPFA算法

    传送门: Dijkstra Bellman-Ford SPFA Floyd 1.算法思想 Bellman-Ford算法时间复杂度比较高,在于Bellman-Ford需要递推n次,每次递推需要扫描所有的 ...