[PGM] Bayes Network and Conditional Independence
2 - 1 - Semantics & Factorization
2 - 2 - Reasoning Patterns
2 - 3 - Flow of Probabilistic Influence
2 - 4 - Conditional Independence
2 - 5 - Independencies in Bayesian Networks
2 - 6 - Naive Bayes
2 - 7 - Application Medical Diagnosis
2 - 8 - Knowledge Engineering Example-SAMIAM
感觉棒棒哒! Professor Daphne Koller
Chain Rule for Bayesian Networks
Calculate joint conditional probability
以下的过程,尤其是概率和为1这一点,对应上图中的某个node的table的一行。
Intercausal reasoning
其实就是先验后验推断的东西。
When can X influence Y?
理性的理解需要建立在一定的贝叶斯统计基础,如下:
Grade --> Difficulty,平均分高,则难度低。
Grade <-- Difficulty,难度低,则平均分高。
Difficulty --> Grade --> Letter,试题难度对Letter如何影响?
Difficulty <-- Grade <-- Letter,试题难度对Letter如何影响?
Grade通过后验作用于Difficulty;
Grade通过先验作用于Letter;
如果Grade确定,先验后验分布各自确定,俩分布当然独立。
如果Grade未确定,Difficulty的先验(Grade)会受到其先验(Letter)的影响。
Grade <-- Intelligence --> SAT,显而易见的影响关系。
作为两个分布的先验,
如果已知,俩分布当然各自独立;
如果未知,其中一个node的数据反推到的后验参数,自然会影响另一个分布。
Difficulty --> Grade <-- Intelligence,共同条件分布,V-structure。
如果已知,数据是由两个参数作用的,当然相互见有影响,例如:
- 参数1小一点,参数2大一点,可能也会是相同的data。
如果未知,两个参数的分布自然没什么关系。
实践:S - I - G - D, S 是否会影响 D?
如果I 已知,block,不能。
如果I 未知,G未知,block,不能。
如果I 未知,G已知,可以。
注:这是快捷的判断方式,针对局部简单的情况。
Conditional Independence
Notice: 思考是否受到了共同先验的影响。
举个例子:两个coin,1)正常的 2)不正常的0.9 vs 0.1
若已知上述信息,那么X1 X2 表示的“上” “下” 面就可直接确定。
若未知上述信息,那么X1 X2 表示的“上” “下” 面,比如:猜测下一次正面的概率,就会受到已知“数据”的影响。
具体地讲:已知两次投掷都是正面,是否更偏向于coin is biased?这边不独立了呢。
D-separation
X与Y是D分离的 given Z。
表示:d-sep(X,Y|Z)
本质就是先验后验相互影响。
好文一读:d-separation: How to determine which variables are independent in a Bayes net
注:这是系统的方法,针对复杂情况。
- “Ancestral graph": this is a reduced version of the original net, 即只考虑长辈。
- "Moralize": 伴侣两两连线。
- “Disorient": 转为无向图。
- “Delete the given and their edges":去除条件部分。
解读结果:
- 不连接,则独立。
- 若连接,不独立。
- If one or both of the variables are missing (because they were givens, and weretherefore deleted), they are independent.
两个经典例子,共赏
附加题
P(D|CEG) =? P(D|C)
Are D and E conditionally independent, given C? AND
Are D and G conditionally independent, given C?
可见,将EG对D的影响,转化为了两个独立问题。俩问题都满足,才是相等。
I-maps
独立图,什么东东? (后续章节有专题)
P满足与图G相关的局部独立性,那么图G是P的一个I-map,P可能有多个I-map。
If P factorizes over G, then G is an I-map for P.
G1 is an I-map for P1.
G2 is an I-map for P1 and P2
- I-map的因子分解
Theorem: If G is an I-map for P, then P factorizes over G.
- 最小I-map
/*...*/
CPCS Network
了解大规模BN的一些问题和重难点。
Ref: https://dslpitt.org/uai/papers/94/p484-pradhan.pdf
Ref: http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume13/cheng00a-html/node15.html
The main network used in our tests is a subset of the CPCS (Computer-based Patient Case Study) model [Pradhan et al.1994], a large multiply-connected multi-layer network consisting of 422 multi-valued nodes and covering a subset of the domain of internal medicine.
Among the 422 nodes,
14 nodes describe diseases, 显眼的特征
33 nodes describe history and risk factors, and 相关指标特征
the remaining 375 nodes describe various findings related to the diseases. 不显眼的特征
To avoid complete table representation, 毕竟没人喜欢处理全连接网。
Knowledge Engineering Example
Samiam Download: http://reasoning.cs.ucla.edu/samiam/index.php?s=
[PGM] Bayes Network and Conditional Independence的更多相关文章
- 条件独立(conditional independence) 结合贝叶斯网络(Bayesian network) 概率有向图 (PRML8.2总结)
本文会利用到上篇,博客的分解定理,需要的可以查找上篇博客 D-separation对任何用有向图表示的概率模型都成立,无论随机变量是离散还是连续,还是两者的结合. 部分图为手写,由于本人字很丑,望见谅 ...
- 条件独立(conditional independence) 结合贝叶斯网络(Bayesian network) 概率有向图 (PRML8.2总结)
转:http://www.cnblogs.com/Dzhouqi/p/3204481.html本文会利用到上篇,博客的分解定理,需要的可以查找上篇博客 D-separation对任何用有向图表示的概率 ...
- [Machine Learning] Probabilistic Graphical Models:二、Bayes Network Fundamentals(1、Semantics & Factorization)
一.How to construct the dependency? 1.首字母即随机变量名称 2.I->G是更加复杂的模型,但Bayes里不考虑,因为Bayes只是无环图. 3.CPD = c ...
- [Bayesian] “我是bayesian我怕谁”系列 - Exact Inferences
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有 ...
- 本人AI知识体系导航 - AI menu
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯 徐亦达老板 Dirichlet Process 学习 ...
- [Bayesian] “我是bayesian我怕谁”系列 - Exact Inference
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有 ...
- PGM:概率图模型Graphical Model
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建 ...
- an introduction to conditional random fields
1.Structured prediction methods are essentially a combination of classification and graphical modeli ...
- 概率图论PGM的D-Separation(D分离)
目录[-] 本文大部分来自:http://www.zhujun.me/d-separation-separation-d.html 一.引言 二.三种情况分析 三.总结 四.应用例子 五.参考资料 其 ...
随机推荐
- D3--数据可视化实战总结
d3理解 标签(空格分隔): 未分类 1.绑定数据 [x] 定义:通过循环的方式将数据绑定在dom元素上,每个数据对应一个元素,所以这个数据的值就能来设定dom元素的width,height,x,y坐 ...
- 如何使用IntelliJ IDEA的Favorites来管理项目中的常用代码
http://www.cnblogs.com/deng-cc/p/6530279.html
- Oracle总结第二篇【视图、索引、事务、用户权限、批量操作】
前言 在Oracle总结的第一篇中,我们已经总结了一些常用的SQL相关的知识点了-那么本篇主要总结关于Oralce视图.序列.事务的一些内容- 在数据库中,我们可以把各种的SQL语句分为四大类- (1 ...
- 利用ADO让普通人用excel读取oracle数据库表的通用办法
Ref:http://blog.csdn.net/iamlaosong/article/details/8465177 Excel通过ADO方式连接到Oracle并操作Oracle给那些编程能力不强的 ...
- Akka(26): Stream:异常处理-Exception handling
akka-stream是基于Actor模式的,所以也继承了Actor模式的“坚韧性(resilient)”特点,在任何异常情况下都有某种整体统一的异常处理策略和具体实施方式.在akka-stream的 ...
- ubuntu中设置php7.0-fpm开机自启动
1.编写/etc/init/php7.0-fpm脚本如下 sudo vim /etc/init/php7.0-fpm #!/bin/sh### BEGIN INIT INFO# Provides: p ...
- 用wrk测试nginx/ndoejs/golang
sudo taskset -c ./wrk -c1 -t1 -d30 http://localhost/hello wrk+nginx(helloworld module) sudo taskset ...
- OpenJudge_1321:棋盘问题
题目描述 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆 ...
- 【转】 Python调用(运行)外部程序
在Python中可以方便地使用os模块运行其他的脚本或者程序,这样就可以在脚本中直接使用其他脚本,或者程序提供的功能,而不必再次编写实现该功能的代码.为了更好地控制运行的进程,可以使用win32pro ...
- ServletListener对象学习笔记
JavaWeb学习笔记--监听器详解 知识概要: 1.监听器下例子举例 2.Servlet规范中的监听器 3. 4. 1. 监听器下例子举例说明: /* Frame:事件源.发生事件的对象 Windo ...