**5.13**

A.

B. 由浮点数加法的延迟,CPE的下界应该是3。

C. 由整数加法的延迟,CPE的下界应该是1.

D. 由A中的数据流图,虽然浮点数乘法需要5个周期,但是它没有“数据依赖”,也就是说,每次循环时的乘法不需要依赖上一次乘法的结果,可以各自独立进行。但是加法是依赖于上一次的结果的(sum = sum + 乘法结果),所以该循环的“关键路径”是加法这条链。而浮点数加法的延迟为3个周期,所以CPE为3.00。

5.14

A. 由5.13中分析的,关键路径是一个加法,而整数加法的延迟为1个周期,所以CPE的下界为1。

更新:题意弄错,不是只分析6*1整数运算,跳跳熊12138指出,已更正。

下面是跳跳熊12138给的答案:

本题的代码有n(数据规模)次加运算和乘运算。cpe最低的情况是加的功能功能单元和乘的功能单元全都处于满流水的状态,此时加和乘都达到吞吐量下界。对于整数运算,加法的吞吐量下界为0.5,乘法的吞吐量下界为1.0,所以cpe=max{0.5,1.0};对于浮点数运算,加法的吞吐量下界是1.0,乘法的吞吐量下界是0.5,所以cpe=max{1.0,0.5}=1.0。综上,cpe的下界是1.0。

B. “6 * 1 loop unrolling”只减少了循环的次数(所以整数的CPE下降了,书上把这个称为“overhead”),并没有减少内存读写的次数和流水线的发生,所以浮点数运算还是不能突破“关键路径”的CPE下界。

5.15

/* 6 * 6 loop unrolling */
/*省略*/
data_t sum1 = (data_t) 0;
data_t sum2 = (data_t) 0;
data_t sum3 = (data_t) 0;
data_t sum4 = (data_t) 0;
data_t sum5 = (data_t) 0; for(i = 0; i < length; i += 6)
{
sum1 = sum1 + udata[i] * vdata[i]; /* 相互独立,可以流水线 */
sum2 = sum2 + udata[i+1] * vdata[i+1];
sum3 = sum3 + udata[i+2] * vdata[i+2];
sum4 = sum4 + udata[i+3] * vdata[i+3];
sum5 = sum5 + udata[i+4] * vdata[i+4];
sum6 = sum6 + udata[i+5] * vdata[i+5];
} for(; i < length; ++i)
{
sum1 = sum1 + udata[i] * vdata[i];
} *dest = sum1 + sum2 + sum3 + sum4 + sum5 + sum6;

虽然此时可以流水线,但是浮点数加法的单元的Issue time为1个周期,而Capacity也为1,所以最多每个时钟周期完成I/C = 1个加法操作,即此时CPE的下界为1。

5.16

/* 6 * 1a loop unrolling */
/*省略*/
data_t sum1 = (data_t) 0;
data_t sum2 = (data_t) 0;
data_t sum3 = (data_t) 0;
data_t sum4 = (data_t) 0;
data_t sum5 = (data_t) 0; for(i = 0; i < length; i += 6)
{
sum = sum + (udata[i] * vdata[i] + udata[i+1] * vdata[i+1] + udata[i+2] * vdata[i+2] + udata[i+3] * vdata[i+3] + udata[i+4] * vdata[i+4] + udata[i+5] * vdata[i+5]);
} for(; i < length; ++i)
{
sum = sum + udata[i] * vdata[i];
} *dest = sum;

5.17

#include <limits.h>
#define K sizeof(unsigned long)
void *word_memset(void *s, int c, size_t n)
{
if (n < K)
{
size_t cnt = 0;
unsigned char *schar = s;
while (cnt < n)
{
*schar++ = (unsigned char)c;
cnt++;
}
}
else
{
unsigned long word = 0;
for (int i = 0; i < K; ++i)
{
word <<= K*CHAR_BIT;
word += (unsigned char)c;
} size_t cnt = 0;
unsigned long *slong = s;
while (cnt < n)
{
*slong++ = word;
cnt += K;
} unsigned char *schar = slong;
while (cnt < n)
{
*schar++ = (unsigned char)c;
cnt++;
}
}
return s;
}

5.18

答案不唯一,我这里是利用10 × 10的loop unrolling改“direct evaluation”的版本。

原函数的瓶颈在于xpwr = xpwr * x这一句,乘法数据依赖,由书上给出的K >= L*C (第540面),其中L是latency,C是capacity,由于浮点数乘法分别对应5和2,所以这里的K选择为10。

另外,K大的时候很可能会碰到寄存器不够的情况,不得不使用栈来保存局部变量(运行的时候会加载到高速缓存),会有一些性能上的牺牲。

double faster_poly(double a[], double x, long degree)
{
long i;
double result1 = a[0];
double result2 = 0;
double result3 = 0;
double result4 = 0;
double result5 = 0;
double result6 = 0;
double result7 = 0;
double result8 = 0;
double result9 = 0;
double result10 = 0; double xpwr1 = x;
double xpwr2 = xpwr1 * x;
double xpwr3 = xpwr2 * x;
double xpwr4 = xpwr3 * x;
double xpwr5 = xpwr4 * x;
double xpwr6 = xpwr5 * x;
double xpwr7 = xpwr6 * x;
double xpwr8 = xpwr7 * x;
double xpwr9 = xpwr8 * x;
double xpwr10 = xpwr9 * x;
double x10 = xpwr10; for (i = 1; (i+9) <= degree; i += 10)
{
result1 += a[i] * xpwr1;
result2 += a[i+1] * xpwr2;
result3 += a[i+2] * xpwr3;
result4 += a[i+3] * xpwr4;
result5 += a[i+4] * xpwr5;
result6 += a[i+5] * xpwr6;
result7 += a[i+6] * xpwr7;
result8 += a[i+7] * xpwr8;
result9 += a[i+8] * xpwr9;
result10 += a[i+9] * xpwr10; xpwr1 *= x10;
xpwr2 *= x10;
xpwr3 *= x10;
xpwr4 *= x10;
xpwr5 *= x10;
xpwr6 *= x10;
xpwr7 *= x10;
xpwr8 *= x10;
xpwr9 *= x10;
xpwr10 *= x10;
}
for (; i <= degree; ++i)
{
result1 += a[i] * xpwr1;
xpwr1 *= x;
} result1 += result2;
result1 += result3;
result1 += result4;
result1 += result5;
result1 += result6;
result1 += result7;
result1 += result8;
result1 += result9;
result1 += result10;
return result1;
}

5.19

瓶颈在于val=val+a[i] (书上还加了last_val ,一个意思)这一句,加法数据依赖,由书上给出的K >= L*C (第540面),其中L是latency,C是capacity,由于浮点数加法分别对应3和1,所以这里选择3*1a。

void faster_psum1a(float a[], float p[], long n)
{
long i;
float val = 0;
for (i = 0; (i+2) < n; i += 3)
{
float tmp1 = a[i];
float tmp2 = tmp1 + a[i+1];
float tmp3 = tmp2 + a[i+2]; p[i] = var + tmp1;
p[i+1] = var + tmp2;
p[i+2] = var = var + tmp3;
}
for (; i < n; ++i)
{
var += a[i];
p[i] = var;
}
}

深入理解计算机系统_3e 第五章家庭作业 CS:APP3e chapter 5 homework的更多相关文章

  1. 深入理解计算机系统_3e 第六章家庭作业 CS:APP3e chapter 6 homework

    6.22 假设磁道沿半径均匀分布,即总磁道数和(1-x)r成正比,设磁道数为(1-x)rk: 由题单个磁道的位数和周长成正比,即和半径xr成正比,设单个磁道的位数为xrz: 其中r.k.z均为常数. ...

  2. 深入理解计算机系统_3e 第七章家庭作业 CS:APP3e chapter 7 homework

    7.6 +-----------------------------------------------------------------------+ |Symbol entry? Symbol ...

  3. 深入理解计算机系统_3e 第三章家庭作业 CS:APP3e chapter 3 homework

    3.58 long decode2(long x, long y, long z) { int result = x * (y - z); if((y - z) & 1) result = ~ ...

  4. 深入理解计算机系统_3e 第十一章家庭作业 CS:APP3e chapter 11 homework

    注:tiny.c csapp.c csapp.h等示例代码均可在Code Examples获取 11.6 A. 书上写的示例代码已经完成了大部分工作:doit函数中的printf("%s&q ...

  5. 深入理解计算机系统_3e 第九章家庭作业 CS:APP3e chapter 9 homework

    9.11 A. 00001001 111100 B. +----------------------------+ | Parameter Value | +--------------------- ...

  6. 深入理解计算机系统_3e 第二章家庭作业 CS:APP3e chapter 2 homework

    初始完成日期:2017.9.26 许可:除2.55对应代码外(如需使用请联系 randy.bryant@cs.cmu.edu),任何人可以自由的使用,修改,分发本文档的代码. 本机环境: (有一些需要 ...

  7. 深入理解计算机系统_3e 第四章家庭作业(部分) CS:APP3e chapter 4 homework

    4.52以后的题目中的代码大多是书上的,如需使用请联系 randy.bryant@cs.cmu.edu 更新:关于编译Y86-64中遇到的问题,可以参考一下CS:APP3e 深入理解计算机系统_3e ...

  8. 深入理解计算机系统_3e 第八章家庭作业 CS:APP3e chapter 8 homework

    8.9 关于并行的定义我之前写过一篇文章,参考: 并发与并行的区别 The differences between Concurrency and Parallel +---------------- ...

  9. 深入理解计算机系统_3e 第十章家庭作业 CS:APP3e chapter 10 homework

    10.6 1.若成功打开"foo.txt": -->1.1若成功打开"baz.txt": 输出"4\n" -->1.2若未能成功 ...

随机推荐

  1. c#简单实现二维数组和二维数组列表List&lt;&gt;的转置

    刚看到网上一篇文章里用sql实现了行列转置.sql server 2005/2008只用一个pivot函数就可以实现sql server 2000很多行的复杂实现.提到转置,立刻想起还在求学阶段曾经做 ...

  2. [转载] Linux curl命令详解

    转载自http://www.linuxdiyf.com/linux/2800.html 命令:curl在Linux中curl是一个利用URL规则在命令行下工作的文件传输工具,可以说是一款很强大的htt ...

  3. Struts2-整理笔记(三)结果处理跳转、获得servletAPI原生

    在struts2中有很多种跳转方式如下是在struts-default.xml截取的一段源码,常用的跳转有 转发:dispatcher.重定向:redirect.转发到Action:chain.重定向 ...

  4. Python字符串之StringIO和struct

    StringIO: 提供类文件接口的字符串缓冲区,可选用性能更好的cStringIO版本: http://docs.python.org/2.7/library/stringio.html#modul ...

  5. (11.20)Java小知识!

      经过一段时间的学习,我也终于来到了Java语言的核心篇,也就是对象与类的学习,今天想要和大家分享的是关于类的小知识点. 1.类的声明: 类可以看成创建Java对象的模板.类亦可以理解成Java一种 ...

  6. webapp填坑记录[更新中]

    网上也有许多的 webapp 填坑记录了,这几个月,我在公司正好也做了2个,碰到了一些问题,所以我在这里记录一下我所碰到的问题: meta 头部声明在开发的时候,刚刚创建 HTML 文件,再使用浏览器 ...

  7. 集合、set以及HASH

    集合的数据结构数据结构就是内存中保存输出数据的形式,不同的数据结构会有不同的特征.堆栈结构:先进后出 代表类(stack):应用场景:java中的方法运行时所占用的空间就是这种结构.队列结构:先进先出 ...

  8. SxsTrace程序追踪 && 错误信息分析

    先贴错误:应用程序无法运行,并行配置不正确 ,使用命令行sxstrace.exe.百度解决版本. 起因:同事给我一 EXE,然后基于 其进行开发 dll和模块,但是无法加入进程,无法运行. SxsTr ...

  9. 原型模式(Prototype)

    原型模式(Prototype) 原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制.克隆,产生一个和原对象类似的新对象.本小结会通过对 ...

  10. Resin4安装配置

    #Resin4安装配置 # Resin4安装配置 #centos6 #参考http://467754239.blog.51cto.com/4878013/1558435 #yum -y install ...