Codeforces 893F - Subtree Minimum Query
893F - Subtree Minimum Query
题意
给出一棵树,每次询问 \(x\) \(k\),求以 \(x\) 为根结点的子树中的结点到结点 \(x\) 的距离小于等于 \(k\) 的结点权值最小值。
分析
可持久化线段树,对每个结点都建树,然后尽可能复用子孙结点的线段树。
对于一般的线段树,我们并不需要记录左右子结点的标号,因为如果当前节点标号为 \(rt\) ,则左右子结点标号为 \(2 * rt\) 和 \(2 * rt + 1\) 。对于本题,若有 \(u\) 是 \(v\) 的父亲,那么理论上 \(u\) 在 \(v\) 所建好的线段树的基础上只会影响一条链的结点,为保证不影响在 \(v\) 结点建好的线段树,对于产生影响的结点我们新建一个结点,并设置左右子结点,对于其它的结点,我们都可以复用,即将左右子结点直接指向已经建好的线段树的结点即可。
code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
const int INF = 2e9 + 10;
int a[N], sz, rot[N * 50], dep[N];
struct node {
int l, r, val;
void init() { l = r = 0; val = INF; }
}nd[N * 50];
vector<int> G[N];
void update(int p, int val, int l, int r, int &rt) {
nd[rt = ++sz].init();
nd[rt].val = min(nd[rt].val, val);
if(l != r) {
int m = l + r >> 1;
if(p <= m) update(p, val, l, m, nd[rt].l);
else update(p, val, m + 1, r, nd[rt].r);
nd[rt].val = min(nd[nd[rt].l].val, nd[nd[rt].r].val);
}
}
int query(int L, int R, int l, int r, int rt) {
if(L <= l && R >= r) return nd[rt].val;
int m = l + r >> 1;
int res = INF;
if(L <= m) res = query(L, R, l, m, nd[rt].l);
if(R > m) res = min(res, query(L, R, m + 1, r, nd[rt].r));
return res;
}
int mergeUp(int u, int v) {
if(!u) return v;
if(!v) return u;
int t = ++sz;
nd[t].init();
nd[t].l = mergeUp(nd[u].l, nd[v].l);
nd[t].r = mergeUp(nd[u].r, nd[v].r);
nd[t].val = min(nd[u].val, nd[v].val);
return t;
}
void dfs(int fa, int u) {
dep[u] = dep[fa] + 1;
update(dep[u], a[u], 1, N, rot[u]);
for(int v : G[u]) {
if(v != fa) {
dfs(u, v);
rot[u] = mergeUp(rot[u], rot[v]);
}
}
}
int main() {
nd[0].init();
int n, r;
scanf("%d%d", &n, &r);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
for(int i = 1; i < n; i++) {
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(0, r);
int q, lst = 0;
scanf("%d", &q);
while(q--) {
int x, k, b, c;
scanf("%d%d", &b, &c);
x = ((b + lst) % n) + 1;
k = (c + lst) % n;
lst = query(dep[x], min(dep[x] + k, N), 1, N, rot[x]);
printf("%d\n", lst);
}
return 0;
}
Codeforces 893F - Subtree Minimum Query的更多相关文章
- [cf contest 893(edu round 33)] F - Subtree Minimum Query
[cf contest 893(edu round 33)] F - Subtree Minimum Query time limit per test 6 seconds memory limit ...
- CF893F Subtree Minimum Query 解题报告
CF893F Subtree Minimum Query 输入输出格式 输入格式: The first line contains two integers \(n\) and \(r\) ( \(1 ...
- Subtree Minimum Query CodeForces - 893F (线段树合并+线段树动态开点)
题目链接:https://cn.vjudge.net/problem/CodeForces-893F 题目大意:给你n个点,每一个点有权值,然后这n个点会构成一棵树,边权为1.然后有q次询问,每一次询 ...
- Educational Codeforces Round 33 (Rated for Div. 2) F. Subtree Minimum Query(主席树合并)
题意 给定一棵 \(n\) 个点的带点权树,以 \(1\) 为根, \(m\) 次询问,每次询问给出两个值 \(p, k\) ,求以下值: \(p\) 的子树中距离 \(p \le k\) 的所有点权 ...
- [CF893F] Subtree Minimum Query
Description: 给定一棵树,每次询问某点子树中到其不超过k的所有点的最小点权 强制在线 Hint: \(n,m\le 10^5\) Solution: 看到题目第一反应是以深度为下标,dfs ...
- 2019.01.19 codeforces893F.Subtree Minimum Query(线段树合并)
传送门 线段树合并菜题. 题意简述:给一棵带点权的有根树,多次询问某个点ppp子树内距离ppp不超过kkk的点的点权最小值,强制在线. 思路: 当然可以用dfsdfsdfs序+主席树水过去. 然而线段 ...
- CF893F:Subtree Minimum Query(线段树合并)
Description 给你一颗有根树,点有权值,m次询问,每次问你某个点的子树中距离其不超过k的点的权值的最小值.(边权均为1,点权有可能重复,k值每次询问有可能不同,强制在线) Input 第一行 ...
- EC Round 33 F. Subtree Minimum Query 主席树/线段树合并
这题非常好!!! 主席树版本 很简单的题目,给一个按照指定节点的树,树上有点权,你需要回答给定节点的子树中,和其距离不超过k的节点中,权值最小的. 肯定首先一想,按照dfs序列建树,然后按照深度为下标 ...
- CF893F Subtree Minimum Query 主席树
如果是求和就很好做了... 不是求和也无伤大雅.... 一维太难限制条件了,考虑二维限制 一维$dfs$序,一维$dep$序 询问$(x, k)$对应着在$dfs$上查$[dfn[x], dfn[x] ...
随机推荐
- shell脚本小案例
1.获取远程ftp数据到本地目录 #!/bin/bash ftp -n<<! open 135.0.24.19 user exchange exchange binary cd /idep ...
- nodejs实现OAuth2.0授权服务
OAuth是一种开发授权的网络标准,全拼为open authorization,即开放式授权,最新的协议版本是2.0. 举个栗子: 有一个"云冲印"的网站,可以将用户储存在Goog ...
- OpenCASCADE 公众号
OpenCASCADE 公众号 eryar@163.com 今天也注册了一个微信公众号,以后会在微信公众号中发表OpenCASCADE学习文章,Blog会与微信公众号同步.下面是微信公众号二维码,欢迎 ...
- iOS UITabView简写瀑布流
代码demo 一.tabViewCell,通过image的比例高算出cell 的高度 #import "TableViewCell.h" @implementation Table ...
- iOS 去掉小数点后边多余的0
-(NSString*)removeFloatAllZero:(NSString*)string { NSString * testNumber = string; NSString * outNum ...
- IDS 源镜像端口添加
把核心交换机的G1/2口镜像到目的交换机的G1/4口,两个交换机之间都是连接的24口 1.核心交换机配置 Ruijie# configure tRuijie(config)# vlan 77Ruiji ...
- bootstrap html页面禁止放大缩小
用bootstrap写的html页面,在手机端中禁止放大缩小: 亲测有效: <meta name="viewport" content="width=device- ...
- ArcGIS API for JavaScript 4.2学习笔记[17] 官方第七章Searching(空间查询)概览与解释
空间分析和空间查询是WebGIS有别于其他Web平台的特点.到这一章,就开始步入空间分析的内容了. [Search widget] 介绍空间查询的核心小部件"Search". [S ...
- bzoj 4237: 稻草人
Description JOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,JOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田地.和启示中的一样,田地需要 ...
- php-自动过滤、自动填充、自动验证
最近又学到了一些新技巧,和大家分享下. 第一.当一个表单有很大内容时,我们在表单处理页面接收这些表单的值的时候就会重复 接收,于是就有了自动过滤的解决之法(核心就是把数据表里需要的字段接收) 首先:我 ...