概述:

  RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。对于一次查询,可以暴力地O(n),但是当查询次数很多的时候,这样的暴力就无法进行了。这时我们可以通过RMQ算法来解决这个问题。

RMQ(ST):(关于学习RMQ的博客:框架即讲解比较详细具体代码比较好

  ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。

  首先是预处理,用动态规划(DP)解决。设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7,F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。 F[1,2]=5,F[1,3]=8,F[2,0]=2,F[2,1]=4……从这里可以看出F[i,0]其实就等于A[i]。这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段的最大值中的最大值。于是我们得到了动态规划方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。

然后是查询。取k=[log2(j-i+1)],则有:RMQ(A, i, j)=min{F[i,k],F[j-2^k+1,k]}。 举例说明,要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。

 int vec[MAX_N];
int dp[MAX_N][];
void ST(int N)
{
for(int i=;i<=N;i++) dp[i][] = vec[i];
for(int j=;(<<j) <= N;j++)
{
for(int i=;i+(<<j)-<=N;i++)
{
dp1[i][j] = max(dp[i][j-],dp[i+(<<j-)][j-]); //由于移位操作的优先度低,1<<j-1 = 1<<(j-1);
}
}
}
int RMQ(int l,int r)
{
int k = ;
while((<<k+) <= r-l+) k++;
return max(dp1[l][k],dp1[r-(<<k)+][k]);
}

POJ-2364

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int MAX_N = 5e4+;
const int INF = 1e9+;
int vec[MAX_N];
int dp1[MAX_N][];
int dp2[MAX_N][];
void ST(int N)
{
for(int i=;i<=N;i++) dp1[i][] = dp2[i][] = vec[i];
for(int j=;(<<j)<=N;j++)
{
for(int i=;i+(<<j)- <= N;i++)
{
dp1[i][j] = max(dp1[i][j-],dp1[i+(<<j-)][j-]);
dp2[i][j] = min(dp2[i][j-],dp2[i+(<<j-)][j-]);
}
}
}
int RMQ(int l,int r)
{
int k = ;
while((<<k+) <= r-l+) k++;
return max(dp1[l][k],dp1[r-(<<k)+][k]) - min(dp2[l][k],dp2[r-(<<k)+][k]);
}
int main()
{
int N,M,T;
while(cin>>N>>M)
{
for(int i=;i<=N;i++)
{
scanf("%d",&vec[i]);
}
ST(N);
for(int i=;i<M;i++)
{
int l,r;
scanf("%d%d",&l,&r);
int ans = RMQ(l,r);
printf("%d\n",ans);
}
}
return ;
}

RMQ算法 (ST算法)的更多相关文章

  1. RMQ的ST算法

    ·RMQ的ST算法    状态设计:        F[i, j]表示从第i个数起连续2^j个数中的最大值    状态转移方程(二进制思想):        F[i, j]=max(F[i,j-1], ...

  2. [总结]RMQ问题&ST算法

    目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced ...

  3. RMQ(ST算法)

    RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列a,回答若干询问RMQ(A,i,j)(i, j<=n),返回数列a中下标在i ...

  4. RMQ之ST算法模板

    #include<stdio.h> #include<string.h> #include<iostream> using namespace std; ; ],M ...

  5. RMQ问题+ST算法

    一.相关定义 RMQ问题 求给定区间的最值: 一般题目给定许多询问区间. 常见问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大 ...

  6. RMQ问题——ST算法

    比赛当中,常会出现RMQ问题,即求区间最大(小)值.我们该怎样解决呢? 主要方法有线段树.ST.树状数组.splay. 例题 题目描述 2008年9月25日21点10分,酒泉卫星发射中心指控大厅里,随 ...

  7. LCA在线算法ST算法

    求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...

  8. RMQ问题ST算法 (还需要进一步完善)

    /* RMQ(Range Minimum/Maximum Query)问题: RMQ问题是求给定区间中的最值问题.当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(n)的 ...

  9. RMQ 问题 ST 算法(模板)

    解决区间查询最大值最小值的问题 用 $O(N * logN)$ 的复杂度预处理 查询的时候只要 $O(1)$ 的时间  这个算法是 real 小清新了   有一个长度为 N 的数组进行 M 次查询 可 ...

  10. RMQ之ST算法

    #include <stdio.h> #include <string.h> ; int a[N]; ]; inline int min(const int &a, c ...

随机推荐

  1. vue2 过渡 轮播图

    ---恢复内容开始--- Vue主要渲染条件: v-if:是将元素删除再创造出来进行渲染. v-show:是将元素的display=none掉,再进行渲染: 要点知识:v-key:唯一元素标识,若不设 ...

  2. Django资源

    官网地址:https://www.djangoproject.com/ 最新发布版本是:1.11.7 官网提供不同版本的文档:1.7.1.8.1.9.1.10.1.11.2.0.dev 安装不同的版本 ...

  3. scala的Option

    当一个函数既要返回对象,又要返回null的时候,使用Option[] http://www.runoob.com/scala/scala-options.html Option是scala的选项,用来 ...

  4. golang其实也可以优先调度

    线上一个服务有个严重问题,处理消息数1k/s提升不上去,经过查看是阻塞在了一个新加的函数上,这个函数负责收集信息,送到一个channel上,再由某个函数处理,这个处理函数很简单,看不出任何问题,最大的 ...

  5. 深入设计电子计算器(一)——CPU指令集设计

    版权申明:本文为博主窗户(Colin Cai)原创,欢迎转帖.如要转贴,必须注明原文网址 http://www.cnblogs.com/Colin-Cai/p/8254096.html 作者:窗户 Q ...

  6. 3、ABPZero系列教程之拼多多卖家工具 项目修改及优化

    本篇内容杂而简单,不需要多租户.不需要多语言.使用MPA(多页面).页面加载速度提升…… 刚登录系统会看到如下界面,这不是最终想要的效果,以下就一一来修改. 不需要多租户 AbpZeroTemplat ...

  7. CSS中水平居中的方法

    居中是我们在css中经常遇到的问题,一般有水平居中.垂直居中.垂直水平居中这3种情况,那么今天首先就来对学习到的水平居中的方法做个总结笔记. css水平居中 text-align:center 它的效 ...

  8. [UWP]如何使用Fluent Design System (下)

    4. 兼容旧版本 FDS最常见的问题之一是如何与Fall Creators Update之前的版本兼容,其实做起来也挺简单的,ColorfulBox就实现了Creators Update与Fall C ...

  9. 初次了解struts的action类

    Action类真正实现应用程序的事务逻辑,它们负责处理请求.在收到请求后,ActionServlet会为这个请求选择适当的Action 如果需要,创建Action的一个实例 调用Action的perf ...

  10. ThreadPoolExecutor的分析(二)

    说明:本作者是文章的原创作者,转载请注明出处:本文地址:http://www.cnblogs.com/qm-article/p/7859620.html 内部类Worker的分析 从源码可知.该内部类 ...