概述:

  RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。对于一次查询,可以暴力地O(n),但是当查询次数很多的时候,这样的暴力就无法进行了。这时我们可以通过RMQ算法来解决这个问题。

RMQ(ST):(关于学习RMQ的博客:框架即讲解比较详细具体代码比较好

  ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。

  首先是预处理,用动态规划(DP)解决。设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7,F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。 F[1,2]=5,F[1,3]=8,F[2,0]=2,F[2,1]=4……从这里可以看出F[i,0]其实就等于A[i]。这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段的最大值中的最大值。于是我们得到了动态规划方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。

然后是查询。取k=[log2(j-i+1)],则有:RMQ(A, i, j)=min{F[i,k],F[j-2^k+1,k]}。 举例说明,要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。

 int vec[MAX_N];
int dp[MAX_N][];
void ST(int N)
{
for(int i=;i<=N;i++) dp[i][] = vec[i];
for(int j=;(<<j) <= N;j++)
{
for(int i=;i+(<<j)-<=N;i++)
{
dp1[i][j] = max(dp[i][j-],dp[i+(<<j-)][j-]); //由于移位操作的优先度低,1<<j-1 = 1<<(j-1);
}
}
}
int RMQ(int l,int r)
{
int k = ;
while((<<k+) <= r-l+) k++;
return max(dp1[l][k],dp1[r-(<<k)+][k]);
}

POJ-2364

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int MAX_N = 5e4+;
const int INF = 1e9+;
int vec[MAX_N];
int dp1[MAX_N][];
int dp2[MAX_N][];
void ST(int N)
{
for(int i=;i<=N;i++) dp1[i][] = dp2[i][] = vec[i];
for(int j=;(<<j)<=N;j++)
{
for(int i=;i+(<<j)- <= N;i++)
{
dp1[i][j] = max(dp1[i][j-],dp1[i+(<<j-)][j-]);
dp2[i][j] = min(dp2[i][j-],dp2[i+(<<j-)][j-]);
}
}
}
int RMQ(int l,int r)
{
int k = ;
while((<<k+) <= r-l+) k++;
return max(dp1[l][k],dp1[r-(<<k)+][k]) - min(dp2[l][k],dp2[r-(<<k)+][k]);
}
int main()
{
int N,M,T;
while(cin>>N>>M)
{
for(int i=;i<=N;i++)
{
scanf("%d",&vec[i]);
}
ST(N);
for(int i=;i<M;i++)
{
int l,r;
scanf("%d%d",&l,&r);
int ans = RMQ(l,r);
printf("%d\n",ans);
}
}
return ;
}

RMQ算法 (ST算法)的更多相关文章

  1. RMQ的ST算法

    ·RMQ的ST算法    状态设计:        F[i, j]表示从第i个数起连续2^j个数中的最大值    状态转移方程(二进制思想):        F[i, j]=max(F[i,j-1], ...

  2. [总结]RMQ问题&ST算法

    目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced ...

  3. RMQ(ST算法)

    RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列a,回答若干询问RMQ(A,i,j)(i, j<=n),返回数列a中下标在i ...

  4. RMQ之ST算法模板

    #include<stdio.h> #include<string.h> #include<iostream> using namespace std; ; ],M ...

  5. RMQ问题+ST算法

    一.相关定义 RMQ问题 求给定区间的最值: 一般题目给定许多询问区间. 常见问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大 ...

  6. RMQ问题——ST算法

    比赛当中,常会出现RMQ问题,即求区间最大(小)值.我们该怎样解决呢? 主要方法有线段树.ST.树状数组.splay. 例题 题目描述 2008年9月25日21点10分,酒泉卫星发射中心指控大厅里,随 ...

  7. LCA在线算法ST算法

    求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...

  8. RMQ问题ST算法 (还需要进一步完善)

    /* RMQ(Range Minimum/Maximum Query)问题: RMQ问题是求给定区间中的最值问题.当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(n)的 ...

  9. RMQ 问题 ST 算法(模板)

    解决区间查询最大值最小值的问题 用 $O(N * logN)$ 的复杂度预处理 查询的时候只要 $O(1)$ 的时间  这个算法是 real 小清新了   有一个长度为 N 的数组进行 M 次查询 可 ...

  10. RMQ之ST算法

    #include <stdio.h> #include <string.h> ; int a[N]; ]; inline int min(const int &a, c ...

随机推荐

  1. python科学计算_numpy_广播与下标

    多维数组下标 多维数组的下标是用元组来实现每一个维度的,如果元组的长度比维度大则会出错,如果小,则默认元组后面补 : 表示全部访问: 如果一个下标不是元组,则先转换为元组,在转换过程中,列表和数组的转 ...

  2. golang 多维数组

    具体的题目如下:(就是将多维数组的行列互换) A multi-dimensional array is an array of arrays. 2-dimensional arrays are the ...

  3. amaze UI 笔记 - JS

    导航添加依据 http://amazeui.org/javascript 下面内容属学习笔记,如有理解偏差和错误请留言相告,感谢!* =(官网这块写的很详细) 一 .UI增强 1.警告框 显示可关闭的 ...

  4. 【python3之文件操作】

    一.文件操作 1.文件处理的流程 1)打开文件,得到文件句柄并赋值给一个变量 2)通过句柄对文件进行操作 3)关闭文件 例如: f = open('chenli.txt') #打开文件 first_l ...

  5. iOS 动画篇 之 Core Animation (一)

    iOS中实现动画有两种方式,一种是自己不断的通过drawRect:方法来绘制,另外一种就是使用核心动画(Core Animation). 导语: 核心动画提供高帧速率和流畅的动画,而不会增加CPU的负 ...

  6. 老版VC++线程池

    在一般的设计中,当需要一个线程时,就创建一个,但是当线程过多时可能会影响系统的整体效率,这个性能的下降主要体现在:当线程过多时在线程间来回切换需要花费时间,而频繁的创建和销毁线程也需要花费额外的机器指 ...

  7. 2017-07-20聊聊《C#本质论》

    第一次接触<C#本质论>是在这个链接.那时候刚学写C#,而且它的语言风格深深吸引了我,噢对了还有它强大的IDE--VS.这个链接里的书确实不错.文中提到: 虽然这三本书都是外国原著的,但是 ...

  8. Django 1.10中文文档-第一个应用Part1-请求与响应

    在本教程中,我们将引导您完成一个投票应用程序的创建,它包含下面两部分: 一个可以进行投票和查看结果的公开站点: 一个可以进行增删改查的后台admin管理界面: 我们假设你已经安装了Django.您可以 ...

  9. 探讨 java中 接口和对象的关系

    接口是对象么?接口可以有对象么?这个问题要跟类比对着,或许更好理解;类是对象的模版.接口不是类,所以:接口肯定不是对象的模版.那接口跟对象有什么样的关系?还是得从类入手;因为类实现了接口,所以可以说, ...

  10. Android自定义安全键盘

    在银行APP里经常要自定义键盘,例如实现下面这样的效果       首先在xml文件里定义键盘 <Keyboard xmlns:android="http://schemas.andr ...