题目描述

这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!

输入输出格式

输入格式:

一行包含两个整数N,M,之间由一个空格隔开。

输出格式:

总共的方案数,由于该值可能很大,只需给出方案数模9999973的结果。

输入输出样例

输入样例#1: 复制

1 3
输出样例#1: 复制

7

说明

样例说明

除了3个格子里都塞满了炮以外,其它方案都是可行的,所以一共有2*2*2-1=7种方案。

数据范围

100%的数据中N和M均不超过100

50%的数据中N和M至少有一个数不超过8

30%的数据中N和M均不超过6

动态规划(组合数+状压,选择合理的状态)

见代码(感谢 @何旭):

 #include<cstdio>
 using namespace std;
 #define mod f[i][j][k]%=9999973
 int n,m;
 ][][];
 long long calc(int x)
 {
     )>>;
 }
 /*
 发个题解,但是我并不打算发程序,下面的程序够详细了,我只是补个思想讲解
 F[I][J][K] 表示已经放了前I行,其中有J列是只放了1个炮,有K列放了2个炮的方案数
 有:(已第三方订正)
 1〉如果第I行不放,有
     F[i][J][K]+=+F[I-1][J][K];
 2〉如果第I行放一个棋子,且这个棋子放在已经放了一个棋子的列上,有
     F[I][J][K]+=F[I-1][J+1][K-1]*(J+1);
 3〉如果第I行放一个棋子,且这个棋子放在已放了0个棋子的列上,有:
     F[I][J][K]+=F[I-1][J-1][K]*(M-J-K+1);
 4〉如果第I列放两个棋子,且两个棋子都放在空列上,有:
     F[I][J][K]+=F[i-1][J-2][K]*(M-J+2-K)*(M-J+1-K) DIV 2;
 5〉如果第I列放两个棋子,且两个棋子一个放在已经放了一个棋子的列,另一个放在放了0个棋子的列。有
     F[I][J][K]+=F[I-1][J+2][K-2]*(J+2)*(J+1)DIV 2 ;
 6〉如果第I列放两个棋子,且这两个棋子都放在已经放过1个棋子的列上,有:
     F[I][J][K]+=F[I-1][J][K-1]*J*(M-J-K+1);
 7〉 F[I][J][K] 的每次累计必须mod 9999973;
 */
 int main()
 {
     scanf("%d%d",&n,&m);
     f[][][]=;
     ; i<=n; i++) {
         ; j<=m; j++) ; k<=m-j; k++) {
                 f[i][j][k]=f[i-][j][k];
                 ) f[i][j][k]+=f[i-][j-][k]*(m-j-k+),mod;
                 ) f[i][j][k]+=f[i-][j+][k-]*(j+),mod;
                 ) f[i][j][k]+=f[i-][j-][k]*calc(m-j+-k),mod;
                 ) f[i][j][k]+=f[i-][j+][k-]*calc(j+),mod;
                 ) f[i][j][k]+=f[i-][j][k-]*j*(m-j-k+),mod;
             }
     }
     ;
     ; i<=m; i++) {
         ; j<=m; j++)
             ans+=f[n][i][j],ans%=;
     }
     printf("%lld\n",ans);
 }

P2051 [AHOI2009]中国象棋的更多相关文章

  1. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  2. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  3. Luogu P2051 [AHOI2009]中国象棋(dp)

    P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...

  4. [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...

  5. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  6. [P2051 [AHOI2009]中国象棋] DP

    https://www.luogu.org/problemnew/show/P2051 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一 ...

  7. 洛谷 P2051 [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  8. P2051 [AHOI2009]中国象棋——DP(我是谁,我在哪,为什么)

    象棋,给你棋盘大小,然后放炮(炮的数量不限),不能让炮打到其他的炮,问方案数: 数据n,m<=200; 状态压缩似乎能做,但是我不会: 因为只要状态数,所以不必纠结每种状态的具体情况: 可以想出 ...

  9. luogu P2051 [AHOI2009]中国象棋

    统计方案,果断 dp 注意到合法方案即为每一行,每一列的棋子数不超过2 设\(f_{i,j,k}\)表示放到第\(i\)行,有\(j\)列可以放2个,有\(k\)列可以放1个的方案 然后就随便讨论一下 ...

随机推荐

  1. Python实现采集wordpress整站数据的爬虫

    最近爱上了python,就非常喜欢使用python来练手,在上次的基础上完善一下代码,实现采集wordpress程序的网站的整站数据的爬虫程序,本站也是采用的wordpress,我就拿吾八哥网(htt ...

  2. Opencv基础课必须掌握:滑动条做调色盘 -OpenCV步步精深

    滑动条做调色盘 我们来想一下这个程序需要什么,首先需要一个窗口显示一切=.=(︿( ̄︶ ̄)︿废话一样): 说到调色盘除了画板也就是窗口(默认为黑色),调色就要涉及三种颜色 红色Red(我们用R表示), ...

  3. linux 下查找图片文件方法

    通常是通过文件后缀名查找图片文件,如果没有文件后缀的图片或者伪造的图片文件,则这种判定方法将达不到要求.我们可以根据读取文件头进行图片文件类型的判定. 比较流行的图片文件类型有:jpg png bmp ...

  4. ModelForm

    这是一个神奇的组件,通过名字我们可以看出来,这个组件的功能就是把model和form组合起来,对,你没猜错,相信自己的英语水平. 先来一个简单的例子来看一下这个东西怎么用: 比如我们的数据库中有这样一 ...

  5. 购物篮算法的理解-基于R的应用

    是无监督机器学习方法,用于知识发现,而非预测,无需事先对训练数据进行打标签,因为无监督学习没有训练这个步骤.缺点是很难对关联规则学习器进行模型评估,一般都可以通过肉眼观测结果是否合理. 一,概念术语 ...

  6. (转)java内存泄漏的定位与分析

    转自:http://blog.csdn.net/x_i_y_u_e/article/details/51137492 1.为什么会发生内存泄漏 java 如何检测内在泄漏呢?我们需要一些工具进行检测, ...

  7. ASP.NET中登录时记住用户名和密码(附源码下载)--ASP.NET

    必需了解的:实例需要做的是Cookie对象的创建和对Cookie对象数据的读取,通过Response对象的Cookies属性创建Cookie,通过Request对象的Cookies可以读取Cookie ...

  8. swift 之xib自定义view可视化到storyboard

    首先直入正题:@IBInspectable & @IBDesignable 对于 @IBInspectable 和 @IBDesignable 可详见官方文档 : Creating a Cus ...

  9. [译]ASP.NET Core 2.0 路由引擎之网址生成

    问题 如何在ASP.NET Core 2.0中由路由引擎来生成网址? 答案 新建一个空项目,修改Startup.cs文件,添加MVC服务和中间件: public void ConfigureServi ...

  10. javascript算法(一)

    1.实现一个函数,运算结果可以满足如下预期结果: add(1)(2) // 3 add(1, 2, 3)(10) // 16 add(1)(2)(3)(4)(5) // 15 实现: function ...