题目连接:

http://poj.org/problem?id=2387

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:

Bessie can get home by following trails 4, 3, 2, and 1.

题意描述:
最短路水题。
解题思路:
处理数据,使用迪杰斯特拉算法。
AC代码:
 #include<stdio.h>
#include<string.h>
int e[][],dis[],bk[];
int main()
{
int i,j,min,t,t1,t2,t3,n,u,v;
int inf=;
while(scanf("%d%d",&t,&n)!=EOF)
{
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if(i==j)
e[i][j]=;
else
e[i][j]=inf;
}
}
for(i=;i<=t;i++)
{
scanf("%d%d%d",&t1,&t2,&t3);
if(e[t1][t2]>t3)
{
e[t1][t2]=t3;
e[t2][t1]=t3;
}
}
for(i=;i<=n;i++)
dis[i]=e[][i];
memset(bk,,sizeof(bk));
bk[]=;
for(i=;i<=n-;i++)
{
min=inf;
for(j=;j<=n;j++)
{
if(bk[j]==&&dis[j]<min)
{
min=dis[j];
u=j;
}
}
bk[u]=;
for(v=;v<=n;v++)
{
if(e[u][v]<inf && dis[v]>dis[u]+e[u][v])
dis[v]=dis[u]+e[u][v];
}
}
printf("%d\n",dis[n]);
}
return ;
}
 

POJ 2387 Til the Cows Come Home(模板——Dijkstra算法)的更多相关文章

  1. 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33015   Accepted ...

  2. POJ 2387 Til the Cows Come Home (dijkstra模板题)

    Description Bessie is out in the field and wants to get back to the barn to get as much sleep as pos ...

  3. (简单) POJ 2387 Til the Cows Come Home,Dijkstra。

    Description Bessie is out in the field and wants to get back to the barn to get as much sleep as pos ...

  4. POJ 2387 Til the Cows Come Home(dijkstra裸题)

    题目链接:http://poj.org/problem?id=2387 题目大意:给你t条边(无向图),n个顶点,让你求点1到点n的最短距离. 解题思路:裸的dijsktra,注意判重边. 代码: # ...

  5. POJ 2387 Til the Cows Come Home (图论,最短路径)

    POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...

  6. POJ.2387 Til the Cows Come Home (SPFA)

    POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...

  7. POJ 2387 Til the Cows Come Home

    题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K ...

  8. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

  9. POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)

    传送门 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46727   Acce ...

  10. POJ 2387 Til the Cows Come Home (最短路 dijkstra)

    Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...

随机推荐

  1. git push的用法

    git push <远程仓库名> <本地分支名>:<远程分支名>

  2. .net中如何实现多线程

    l线程肯定也是要执行一段代码的.所以要产生一个线程,必须先为该线程写一个方法,这个方法中的代码就是该线程运行所要执行的代码.(找个人来做一件事情) l线程启动时,通过委托调用该方法. (委托的好处) ...

  3. > library('ggplot2') Error in loadNamespace(i, c(lib.loc, .libPaths()), versionCheck = vI[[i]]) : 不存在叫‘colorspace’这个名字的程辑包

    > library('ggplot2')Error in loadNamespace(i, c(lib.loc, .libPaths()), versionCheck = vI[[i]]) : ...

  4. 服务器 Python服务停服、起服脚本

    近日,在阿里云服务器上部署了一个Python,Web框架为Tornado,服务器为Ubuntu 16.04. 服务的启动也十分的简单: python services.py 我是利用Xshell工具连 ...

  5. python实现二分查找算法

    二分查找算法也成为折半算法,对数搜索算法,一会中在有序数组中查找特定一个元素的搜索算法.搜索过程是从数组中间元素开始的 如果中间元素正好是要查找的元素,则搜索过程结束:如果查找的数大于中间数,则在数组 ...

  6. 关于Python的函数(Method)与方法(Function)

    先上结论: 函数(function)是Python中一个可调用对象(callable), 方法(method)是一种特殊的函数. 一个可调用对象是方法和函数,和这个对象无关,仅和这个对象是否与类或实例 ...

  7. IndentationError: unexpected indent

    都知道python是对格式要求很严格的,写了一些python但是也没发现他严格在哪里,今天遇到了IndentationError: unexpected indent错误我才知道他是多么的严格.    ...

  8. Netty入门之客户端与服务端通信(二)

    Netty入门之客户端与服务端通信(二) 一.简介 在上一篇博文中笔者写了关于Netty入门级的Hello World程序.书接上回,本博文是关于客户端与服务端的通信,感觉也没什么好说的了,直接上代码 ...

  9. OLAP与数据仓库------《Designing Data-Intensive Applications》读书笔记4

    由于第三章的内容比较多,这里我们拆分成两篇读书笔记来记录.上一章我们聊了聊如何数据库是如何实现存储和检索的,今天这篇我们继续来看看OLTP与OLAP存储引擎的区别与联系. 1.OLTP与OLAP 联机 ...

  10. css实现连续的图像边框

    有时我们想把一个图片应用为边框,而不是背景,最简单的办法是使用两个HTML元素,一个元素用来把我们的石雕图片设置为背景,另一个元素用来存放内容,并设置纯白背景,然后覆盖在前者之上,这个方法需要一个额外 ...