前两篇文章已经对Fork Join的设计和JDK中源码的简要分析。这篇文章,我们来简单地看看我们在开发中怎么对JDK提供的工具类进行应用,以提高我们的需求处理效率。

  Fork Join这东西确实用好了能给我们的任务处理提高效率,也为开发带来方便。但Fork Join不是那么容易用好的,我们先来看几个例子(反例)。

0. 反例错误分析

  我们先来看看这篇文章中提供的例子:http://www.iteye.com/topic/643724 (因为是反例,就不提供超链接了,只以普通文本给出URL)

  这篇文章是我学习和整理Fork Join时搜索到的一篇文章,其实总的来说这篇文章前面分析得还是比较好的,只是给出的第一个例子(有返回结果的RecursiveTask应用的例子) 没有正确地对Fork Join进行应用。为了方便分析,还是贴下这个例子中具体的的代码吧。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public class Calculator extends RecursiveTask {
 
    private static final int THRESHOLD = 100;
    private int start;
    private int end;
 
    public Calculator(int start, int end) {
        this.start = start;
        this.end = end;
    }
 
    @Override
    protected Integer compute() {
        int sum = 0;
        if((start - end) < THRESHOLD){
            for(int i = start; i< end;i++){
                sum += i;
            }
        }else{
            int middle = (start + end) /2;
            Calculator left = new Calculator(start, middle);
            Calculator right = new Calculator(middle + 1, end);
            left.fork();
            right.fork();
 
            sum = left.join() + right.join();
        }
        return sum;
    }
 
}

  我们看到其中一段已经高亮的代码,显示对两个子任务进行fork()调用,即分别提交给当前线程的任务队列,依次加到末尾。紧接着,又按照调用fork()的顺序执行两个子任务对象的join()方法。

  其实,这样就有一个问题,在每次迭代中,第一个子任务会被放到线程队列的倒数第二个位置,第二个子任务是最后一个位置。当执行join()调用的时 候,由于第一个子任务不在队列尾而不能通过执行ForkJoinWorkerThread的unpushTask()方法取出任务并执行,线程最终只能挂 起阻塞,等待通知。而Fork Join本来的做法是想通过子任务的合理划分,避免过多的阻塞情况出现。这样,这个例子中的操作就违背了Fork Join的初衷,每次子任务的迭代,线程都会因为第一个子任务的join()而阻塞,加大了代码运行的成本,提高了资源开销,不利于提高程序性能。

  除此之外,这段程序还是不能进入Fork Join的过程,因为还有一个低级错误。看下第15、16行代码的条件,就清楚了。按照逻辑,start必然是比end小的。这将导致所有任务都将以循环累加的方式完成,而不会执行fork()和join()。

  由此可见,Fork Join的使用还是要注意对其本身的理解和对开发过程中细节的把握的。我们看下JDK中RecursiveAction和RecursiveTask这两个类。

1. RecursiveAction分析及应用实例

  这两个类都是继承了ForkJoinTask,本身给出的实现逻辑并不多不复杂,在JDK的类文件中,它的注释比源码还要多。我们可以看下它的实现代码。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public abstract class RecursiveAction extends ForkJoinTask<Void> {
    private static final long serialVersionUID = 5232453952276485070L;
 
    protected abstract void compute();
 
    public final Void getRawResult() { return null; }
 
    protected final void setRawResult(Void mustBeNull) { }
 
    protected final boolean exec() {
        compute();
        return true;
    }
}

  我们看到其中两个方法是关于处理空返回值的方法。而exec方法则是调用了compute(),这个compute就是我们使用Fork Join时需要自己实现的逻辑。

  我们可以看下API中给出的一个最简单最具体的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class IncrementTask extends RecursiveAction {
   final long[] array; final int lo; final int hi;
   IncrementTask(long[] array, int lo, int hi) {
     this.array = array; this.lo = lo; this.hi = hi;
   }
   protected void compute() {
     if (hi - lo < THRESHOLD) {
       for (int i = lo; i < hi; ++i)
         array[i]++;
     }
     else {
       int mid = (lo + hi) >>> 1;
       invokeAll(new IncrementTask(array, lo, mid),
                 new IncrementTask(array, mid, hi));
     }
   }
 }

  大致的逻辑就是,对给定一个特定数组的某段,进行逐个加1的操作。我们看到else中的代码块,显示取一个lo和hi的中间值,此后分割成两个子任务,并进行invokeAll()调用。我们来看下继承自FutureTask的invokeAll()方法实现。很简单:

1
2
3
4
5
public static void invokeAll(ForkJoinTask<?> t1, ForkJoinTask<?> t2) {
    t2.fork();
    t1.invoke();
    t2.join();
}

  对于参数中的两个子任务,对第二个子任务进行fork(),即放入线程对应队列的结尾,然后执行第一个子任务,再调用第二个子任务的join(),实际上就是跳转到第二个子任务,进行执行(当然如果不能执行,就需要阻塞等待了)。

  其实invokeAll()是个重载方法,同名的还有另外两个,基本逻辑都是一样的,我们拿出一个通用一点的来看一下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public static void invokeAll(ForkJoinTask<?>... tasks) {
    Throwable ex = null;
    int last = tasks.length - 1;
    for (int i = last; i >= 0; --i) {
        ForkJoinTask<?> t = tasks[i];
        if (t == null) {
            if (ex == null)
                ex = new NullPointerException();
        }
        else if (i != 0)
            t.fork();
        else if (t.doInvoke() < NORMAL && ex == null)
            ex = t.getException();
    }
    for (int i = 1; i <= last; ++i) {
        ForkJoinTask<?> t = tasks[i];
        if (t != null) {
            if (ex != null)
                t.cancel(false);
            else if (t.doJoin() < NORMAL && ex == null)
                ex = t.getException();
        }
    }
    if (ex != null)
        UNSAFE.throwException(ex);
}

  我们发现第一个子任务(i==0的情况)没有进行fork,而是直接执行,其余的统统先调用fork()放入任务队列,之后再逐一join()。其 实我们注意到一个要点就是第一个任务不要fork()再join(),也就是上面中例子的错误所在,这样会造成阻塞,而不能充分利用Fork Join的特点,也就不能保证任务执行的性能。

2. RecursiveTask简要说明

  其实说完了RecursiveAction,RecursiveTask可以用“同理”来解释。实现代码也很简单:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public abstract class RecursiveTask<V> extends ForkJoinTask<V> {
    private static final long serialVersionUID = 5232453952276485270L;
 
    V result;
 
    protected abstract V compute();
 
    public final V getRawResult() {
        return result;
    }
 
    protected final void setRawResult(V value) {
        result = value;
    }
 
    protected final boolean exec() {
        result = compute();
        return true;
    }
 
}

  我们看到唯一不同的是返回结果的处理,其余都可以和RecursiveAction一样使用。

3. Fork Join应用小结

  Fork Join是为我们提供了一个非常好的“分而治之”思想的实现平台,并且在一定程度上实现了“变串行并发为并行”。但Fork Join不是万能的页不完全是通用的,对于可很好分解成子任务的场景,我们可以对其进行应用,更多时候要考虑需求和应用场景,并且注意其使用要点才行。

Java7中的ForkJoin并发框架初探(下)—— ForkJoin的应用的更多相关文章

  1. [转]Java7中的ForkJoin并发框架初探(下)—— ForkJoin的应用

    详见: http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp86   前两篇文章已经对Fork Join的设计和JDK中源码的简要分析 ...

  2. Java7中的ForkJoin并发框架初探(中)——JDK中实现简要分析

    原文发表于 2013 年 8 月 28 日 由 三石 根据前文描述的Doug Lea的理论基础,在JDK1.7中已经给出了Fork Join的实现.在Java SE 7的API中,多了ForkJoin ...

  3. [转]Java7中的ForkJoin并发框架初探(中)——JDK中实现简要分析

    详见: http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp85   根据前文描述的Doug Lea的理论基础,在JDK1.7中已经给 ...

  4. [转]Java7中的ForkJoin并发框架初探(上)——需求背景和设计原理

    详见: http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp83 这篇我们来简要了解一下JavaSE7中提供的一个新特性 -- For ...

  5. Java7中的ForkJoin并发框架初探(上)——需求背景和设计原理

    原文:发表于 2013 年 8 月 26 日 由 三石 0. 处理器发展和需求背景 回想一下并发开发的初衷,其实可以说是有两点,或者说可以从两个方面看. 对于单核的处理器来说,在进行IO操作等比较费时 ...

  6. Python3中tornado高并发框架

    1.单线程tornado.web:基础web框架模块tornado.ioloop:核心IO循环模块,高效的基础.封装了:1.asyncio 协程,异步处理2. epoll模型:水平触发(状态改变就询问 ...

  7. 来,带你鸟瞰 Java 中4款常用的并发框架!

    1. 为什么要写这篇文章 几年前 NoSQL 开始流行的时候,像其他团队一样,我们的团队也热衷于令人兴奋的新东西,并且计划替换一个应用程序的数据库. 但是,当深入实现细节时,我们想起了一位智者曾经说过 ...

  8. 使用 ACE 库框架在 UNIX 中开发高性能并发应用

    使用 ACE 库框架在 UNIX 中开发高性能并发应用来源:developerWorks 中国 作者:Arpan Sen ACE 开放源码工具包可以帮助开发人员创建健壮的可移植多线程应用程序.本文讨论 ...

  9. JAVA并行框架学习之ForkJoin

    当硬件处理能力不能按照摩尔定律垂直发展的时候,选择了水平发展,多核处理器已经广泛应用.未来随着技术的进一步发展,可能出现成百上千个处理核心,但现有的程序运行在多核心处理器上并不能得到较大性能的提升,主 ...

随机推荐

  1. React中使用CSSTransitionGroup插件实现轮播图

    动画效果,是一个页面上必不可少的功能,学习一个新的东西,当然就要学习,如何用新的东西,用它的方法去实现以前的东西啦.今天呢,我就在这里介绍一个试用react-addons-css-transition ...

  2. Servlet小总结(转)

    一,什么是Servlet? Servlet是一个Java编写的程序,此程序是基于Http协议的,在服务器端运行的(如tomcat), 是按照Servlet规范编写的一个Java类. 二,Servlet ...

  3. 使用JDB调试Java程序

    Java程序中有逻辑错误,就需要使用JDB来进行调试了.调试程序在IDE中很方便了,比如这篇博客介绍了在Intellj IDEA中调试Java程序的方法. 我们课程内容推荐在Linux环境下学习,有同 ...

  4. 在Activiti中如何使用自定义的组织架构

    1.概述 我们知道,activiti是一个不错的流程引擎,它有自身的人员组织架构,但仅限于用户.用户组的管理,流程产生的任务(UserTask),就涉及到任务的所属人(Owner),任务的执行人(as ...

  5. 华为C语言编程规范笔记1

    入职之前,公司培训,做了点笔记~

  6. 漫谈PHP代码规范

    前言 虽说PHP是世界上最好的语言,但是写出来的PHP代码却往往不是最美观的.究其原因,可能正式因为PHP简单易上手,适合快速迭代的特性,导致了我们沉浸在迅速完成需求迭代的窃喜中,却忘记了规范性.忽略 ...

  7. JavaWeb总结(六)—Session

    一.Session的介绍 在Web开发中,服务器可以为每个用户浏览器创建一个会话对象(session对象),注意:一个浏览器独占一个session对象(默认情况下).因此,在需要保存用户数据时,服务器 ...

  8. java中GUI的awt和Swing的知识点

    刚刚学习了java的GUI,写了几个程序,基本熟悉了awt和Swing,下面和大家分享一下知识点 1.JFrame的层次结构 参考:http://tieba.baidu.com/p/200421612 ...

  9. Rookey.Frame v1.0极速开发平台稳定版发布

    Rookey.Frame v1.0经过一年时间的修改及沉淀,稳定版终于问世了,此版本经过上线系统验证,各个功能点都经过终端用户验证并持续优化,主要优化以下几个方面: 1.性能较原来提升3倍之多 2.修 ...

  10. Nginx反向代理以及负载均衡配置

    项目地址:http://git.oschina.net/miki-long/nginx 前提:最近在研究nginx的用法,在windows上小试了一下,由于windows下不支持nginx缓存配置,所 ...