[IR] String Matching
BWT
KMP
Boyer-Moore
BWT
[IR] BWT+MTF+AC 中已经介绍了BWT (Burrows–Wheeler_transform)数据转换算法,
这种变换方式不仅方便压缩,同时对pattern search也带来了意想不到的好处。
事实上,BWT形式的数据,可以仅还原局部数据,而非必须还原完整的文件。
Left
Symbol | #Less Than |
A | 0 |
B | 3 |
N | 4 |
[ | 6 |
] | 7 |
Right
Position | Symbol | #Matching(idx) | |
B | +->:[ | 0 | |
N | +->:A | 0 | |
N | +->:A | 1 | |
[ | E | 0 | |
A | +->:B | 0 | |
A | +->:N | 1 | |
] | :A | 0 | |
A | +->:N | 2 |
图示化以上搜索过程(其中一步Postion:5):
匹配的过程,实际就是搜索范围逐渐缩小的过程,如下:
若能持续搜索到Pattern最后一个字符,则说明该字符串(pattern)在文本中。
时间复杂度就是O(len(pattern))。
Knuth-Morris-Pratt (KMP)
因为brute Force太蠢,所以有了该算法。
• Brute force pattern matching runs in time O(mn) in the worst case.
• But most searches of ordinary text take O(m+n), which is very quick.
那么,剩下的唯一问题就是,如何构造《部分匹配表》(Partial Match Table)
P[j]: The largest prefix of P[0 .. j-1] that is a suffix of P[1 .. j-1].
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABACAB"为例,
[0] ABACAB- P[0 .. -1]的前缀和P[1 .. -1]的后缀为“非法”,共有元素的长度为-1;
[1] ABACAB- P[0 .. 0]的前缀和P[1 .. 0]的后缀为空,共有元素的长度为0;
[2] ABACAB- P[0 .. 1]的前缀为{A},P[1 .. 1]的后缀为空,共有元素的长度为0;
[3] ABACAB- P[0 .. 2]的前缀为{A, AB},P[1 .. 2]的后缀为{A},共有元素的长度为1;
[4] ABACAB- P[0 .. 3]的前缀为{A, AB, ABA},P[1 .. 3]的后缀为{AC, C},共有元素的长度为0;
[5] ABACAB- P[0 .. 4]的前缀为{A, AB, ABA, ABAC},P[1 .. 4]的后缀为{ACA, CA, A},共有元素的长度为1;
但,也有缺陷:
KMP doesn’t work so well as the size of the alphabet increases
– more chance of a mismatch (more possible mismatches)
– mismatches tend to occur early in the pattern, but KMP is faster when the mismatches occur later
Boyer-Moore Algorithm
算是一种改进形式,跟重视后缀;头部对齐,从尾部比较。
Most text processors use BM for “find” (&“replace”) due to its good performance for general text documents.
Ref: 字符串匹配的Boyer-Moore算法
Link: http://www.cs.utexas.edu/users/moore/publications/fstrpos.pdf
特点:《好字符规则》和《坏字符规则》,以最大移动值为准。
一个简单的示例:
Step 1
首先,"字符串"与"搜索词"头部对齐,从尾部开始比较。
这是一个很聪明的想法,因为如果尾部字符不匹配,那么只要一次比较,就可以知道前7个字符(整体上)肯定不是要找的结果。
我们看到,"S"与"E"不匹配。这时,"S"就被称为"坏字符"(bad character),即不匹配的字符。
我们还发现,"S"不包含在搜索词"EXAMPLE"之中,这意味着可以把搜索词直接移到"S"的后一位。如下:
Step 2
依然从尾部开始比较,发现"P"与"E"不匹配,所以"P"是"坏字符"。
但是,"P"包含在搜索词"EXAMPLE"之中。所以,将搜索词后移两位,两个"P"对齐。(利用了pattern内部的信息)
这个两位是怎么来的呢?
Ans:《坏字符规则》
后移位数 = 坏字符的位置 - 搜索词中的上一次出现位置
OK,根据这个规则,再重新审视Step1 and Step2。
Step 1: 后移位数=6-(-1)=7 // -1:在pattern中未发现坏字符
Step 2: 后移位数=6-4=2 // 4:在pattern中idx=4发现坏字符
However,这样是不够的,在某种情况下还不能达到更优的移动策略。
继续我们的示例:
Step 1
依然从尾部开始比较,"E"与"E"匹配;接下来,匹配了更多。
比较前面一位,"MPLE"与"MPLE"匹配。我们把这种情况称为"好后缀"(good suffix),即所有尾部匹配的字符串。
注意,"MPLE"、"PLE"、"LE"、"E"都是好后缀。
但接下来,继续比较前一位,发现"I"与"A"不匹配。所以,"I"是"坏字符"。
根据"坏字符规则",此时搜索词应该后移 2 - (-1)= 3 位。如下:
但,看上去这个move不是很聪明的样子,显然可以一次性移动更多步。
初步看上去,并没有利用到Pattern中两次出现的E。
如何利用?
Ans:《好后缀规则》
后移位数 = 好后缀的位置 - Pattern中的上一次出现位置
OK,根据这个规则,再重新审视Step1。
Step 1: 后移位数=6-=6 // 0:"好后缀"(MPLE、PLE、LE、E)之中[Ref:KMP"部分匹配表"],只有"E"在"EXAMPLE"出现在头部,idx=0
- "好后缀"的位置以最后一个字符为准。假定"ABCDEF"的"EF"是好后缀,则它的位置以"F"为准,即5(从0开始计算)。
- 如果"好后缀"在搜索词中只出现一次,则它的上一次出现位置为 -1。也就是pattern靠前的位置没有再出现了呢。
- 如果"好后缀"有多个,
- 最长的那个"好后缀",位置灵活;考前位置出现的话,优先选!否则,查看其他“好后缀”。
- 其他"好后缀",上一次出现位置必须在头部。
比如,假定"BABCDAB"的"好后缀"是"DAB"、"AB"、"B",这时"好后缀"的上一次出现位置是什么?
BABCDAB
BABCDAB
BABCDAB <----
回答是,此时采用的好后缀是"B",它的上一次出现位置是头部,即第0位。
这个规则也可以这样表达:如果最长的那个"好后缀"只出现一次,则可以把搜索词改写成如下形式进行位置计算"(DA)BABCDAB",即虚拟加入最前面的"DA"。
更巧妙的是,这两个规则的移动位数,只与搜索词有关,与原字符串无关。因此,可以预先计算生成《坏字符规则表》和《好后缀规则表》。使用时,只要查表比较一下就可以了。
那么,如何事前制表?
Ref: http://www.cs.utexas.edu/users/moore/publications/fstrpos.pdf
[IR] String Matching的更多相关文章
- Binary String Matching
问题 B: Binary String Matching 时间限制: 3 Sec 内存限制: 128 MB提交: 4 解决: 2[提交][状态][讨论版] 题目描述 Given two strin ...
- NYOJ之Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose a ...
- ACM Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- 南阳OJ----Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- Binary String Matching(kmp+str)
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
- Aho - Corasick string matching algorithm
Aho - Corasick string matching algorithm 俗称:多模式匹配算法,它是对 Knuth - Morris - pratt algorithm (单模式匹配算法) 形 ...
- [POJ] String Matching
String Matching Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4074 Accepted: 2077 D ...
- String Matching Content Length
hihocoder #1059 :String Matching Content Length 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 We define the ...
- NYOJ 5 Binary String Matching
Binary String Matching 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Given two strings A and B, whose alp ...
随机推荐
- 又拍云SSL证书全新上线,提供一站式HTTPS安全解决方案
互联网快速发展,云服务早已融入每一个人的日常生活,而互联网安全与互联网的发展息息相关,这其中涉及到信息的保密性.完整性.可用性.真实性和可控性.又拍云上线了与多家国际顶级 CA 机构合作的数款OV & ...
- JQuery使用mousedown和mouseup简单判断鼠标按下与释放位置是否相同
在JQuery中,我们可以利用mousedown.mouseup来跟踪页面的鼠标按下与释放事件. 如何获取鼠标的位置信息呢?事件event的pageX和pageY属性可以让我们获得鼠标在页面中的具体位 ...
- Java Swing 图形界面实现验证码(验证码可动态刷新)
import java.awt.Color;import java.awt.Font;import java.awt.Graphics;import java.awt.Toolkit;import j ...
- [笔记]机器学习(Machine Learning) - 00.目录/大纲/写在之前
目录会根据我的学习进度而更新,给自己列一个大纲以系统地看待整个学习过程. 学习资料来源 学习的是Coursera上吴恩达(Andrew Ng)老师的机器学习视频(课程传送门,最近在"最强大脑 ...
- [刷题]算法竞赛入门经典(第2版) 4-10/UVa815 - Flooded!
书上具体所有题目:http://pan.baidu.com/s/1hssH0KO 代码:(Accepted,0 ms) //UVa815 - Flooded! #include<iostream ...
- Java 通过先序后序序列生成二叉树
题目 二叉树的前序以及后续序列,以空格间隔每个元素,重构二叉树,最后输出二叉树的三种遍历方式的序列以验证. 输入: 1 2 3 4 5 6 7 8 9 10 3 2 5 4 1 7 8 6 10 9 ...
- 【JavaScript中的this详解】
前言 this用法说难不难,有时候函数调用时,往往会搞不清楚this指向谁?那么,关于this的用法,你知道多少呢? 下面我来给大家整理一下关于this的详细分析,希望对大家有所帮助! this指向的 ...
- Mac上面Mov转gif
尝试了很多方法,后来发现这个网站转换的结果最好, http://ezgif.com/video-to-gif/
- 关于Python编码,超诡异的,我也是醉了
Python的编码问题,真是让人醉了.最近碰到的问题还真不少.比如中文文件名.csv .python对外呈现不一致啊,感觉好不公平. 没图说个JB,下面立马上图. 我早些时候的其他脚本,csv都是 ...
- while循环 操作列表与字典
1.在列表间移动元素 #!/usr/bin/env python #filename=list.py num1 = [1,3,5,7,9,11,13,15] num2 = [] while num1: ...