Description

Farmer John's family pitches in with the chores during milking, doing all the chores as quickly as possible. At FJ's house, some chores cannot be started until others have been completed, e.g., it is impossible to wash the cows until they are in the stalls. 



Farmer John has a list of N (3 <= N <= 10,000) chores that must be completed. Each chore requires an integer time (1 <= length of time <= 100) to complete and there may be other chores that must be completed before this chore is started. We will call these
prerequisite chores. At least one chore has no prerequisite: the very first one, number 1. Farmer John's list of chores is nicely ordered, and chore K (K > 1) can have only chores 1,.K-1 as prerequisites. Write a program that reads a list of chores from 1
to N with associated times and all perquisite chores. Now calculate the shortest time it will take to complete all N chores. Of course, chores that do not depend on each other can be performed simultaneously.

Input

* Line 1: One integer, N 



* Lines 2..N+1: N lines, each with several space-separated integers. Line 2 contains chore 1; line 3 contains chore 2, and so on. Each line contains the length of time to complete the chore, the number of the prerequisites, Pi, (0 <= Pi <= 100), and the Pi
prerequisites (range 1..N, of course). 

Output

A single line with an integer which is the least amount of time required to perform all the chores. 

       原题很简单,就是给定N个任务的时间和每个任务的前驱,求最短完成时间。
       初步研究,此题可以用最长路或是拓扑图来求解。

        vijos上有一道“休息中的小呆”,原理和此类似,然而那儿N<=100,N^3也绰绰有余,我就用floyd算法求出最长路并记录。然而现在的N<=10000,就连N^2也很危险。

        第一次,我打算也是用最长路求解。咨询过鼎神,目前只有SPFA可以有效处理最长路问题。方法就是把每条边的权值取相反数并做一遍最短路,答案再取相反数。因为N有10000而边数不知道,只好开一个边表记录。

代码一(SPFA最长路+边表优化)
#include<stdio.h>
#include<cstring>
using namespace std;
const long maxn=10001;const long INF=1;
bool flag[maxn];long cnt,i,n,j,xx,time,y,h,t,go,now,ans,tong;
long dis[maxn],begin[maxn],end[maxn],x[200*maxn];
struct arr{long l,r,s,next;}a[200*maxn];
void make_up(long l,long r,long v)
{
  a[++cnt].l=l;a[cnt].r=r;a[cnt].s=-v;a[cnt].next=-1;
  if (begin[l]==0) {begin[l]=cnt;end[l]=cnt;}
  else {a[end[l]].next=cnt;end[l]=cnt;}
}
int main()
{
  //freopen("chores.in","r",stdin);freopen("chores.out","w",stdout);
  scanf("%ld",&n);
  for (i=1;i<=n;i++)
  {
    scanf("%ld",&time);
    scanf("%ld",&xx);
    for (j=1;j<=xx;j++)
    {
      scanf("%ld",&y);
      make_up(y,i,time);
    }
    if (xx==0) make_up(0,i,time);
  }
  memset(flag,0,sizeof(flag));memset(dis,INF,sizeof(dis));
  h=0;t=1;x[1]=0;dis[0]=0;flag[0]=true;
  while (h<t)
  {
     now=x[++h];if (begin[now]==0) continue;i=begin[now];
     while (true)
     {
       go=a[i].r;
       if (dis[now]+a[i].s<dis[go])
       {
         dis[go]=dis[now]+a[i].s;
         if (!flag[go])
         {
           flag[go]=true;
           x[++t]=go;
         }
       }
       if (a[i].next==-1) break;i=a[i].next;
     }
     flag[now]=false;
  }
  for (i=1;i<=n;i++)
    if (-dis[i]>ans) ans=-dis[i];

  printf("%ld",ans);
  //scanf("%ld",&n);
  return 0;
}

然而交了之后一直TLE,自己下了个数据,发现最后一个点大概要13s左右!想不到在稠密图里,SPFA的效率又如此之低!(边表的常数又很大)无论怎么优化都不行!

       
       最后只能请教互联网了,没想到,其他大牛的代码如此简单!他们用了近似DP的算法!

代码二(据网上思路改编代码)
#include<stdio.h>
#include<cstring>
using namespace std;
long f[10001],n,i,j,max,ans,xx,y;
int main()
{
  //freopen("chores.in","r",stdin);freopen("chores.out","w",stdout);
  scanf("%ld",&n);
  for (i=1;i<=n;i++)
  {
    scanf("%ld",&f[i]);
    scanf("%ld",&xx);max=0;
    for (j=1;j<=xx;j++)
    {
      scanf("%ld",&y);
      if (f[y]>max) max=f[y];
    }
    f[i]+=max;
    if (f[i]>ans) ans=f[i];
  }
  printf("%ld",ans);
  //scanf("%ld",&n);
  return 0;
}

然而仔细一想,我发现他们只是钻了一个数据的漏洞——刚好数据的前后关系是由小到大的。思考了很长时间,我研究出了一个更加高级的算法——记忆化深搜+边表优化!


代码三(最终AC的代码)
#include<stdio.h>
#include<cstring>
using namespace std;
const long maxn=10001;const long INF=1;
long time[maxn],dp[maxn],begin[maxn],end[maxn],cnt,j,n,i,x,y,ans;
struct arr{long l,r,next;}a[200*maxn];
void make_up(long l,long r)
{
  a[++cnt].l=l;a[cnt].r=r;a[cnt].next=-1;
  if (begin[l]==0) {begin[l]=cnt;end[l]=cnt;}
  else {a[end[l]].next=cnt;end[l]=cnt;}
}
long go(long k)
{
  if (dp[k]>0) return dp[k];
  long now=begin[k];
  while (now>0)
  {
    long temp=go(a[now].r);
    dp[k]=(temp>dp[k])?temp:dp[k];
    now=a[now].next;
  }
  dp[k]+=time[k];
  return dp[k];
}
int main()
{
  //freopen("chores.in","r",stdin);freopen("chores.out","w",stdout);
  scanf("%ld",&n);
  for (i=1;i<=n;i++)
  {
    scanf("%ld",&time[i]);
    scanf("%ld",&x);
    for (j=1;j<=x;j++)
    {
      scanf("%ld",&y);make_up(i,y);
    }
    if (x==0) dp[i]=time[i];
  }
  for (i=1;i<=n;i++)
  {
    long temp=go(i);
    ans=(temp>ans)?temp:ans;
  }
  printf("%ld",ans);
  //scanf("%ld",&n);
  return 0;
}

希望众神牛看到后能够留言指导!


usaco 2002 月赛 Chores 题解的更多相关文章

  1. usaco 2002 月赛 Fiber Communications 题解

    Description Farmer John wants to connect his N (1 <= N <= 1,000) barns (numbered 1..N) with a ...

  2. POJ1944 Fiber Communications (USACO 2002 February)

    Fiber Communications 总时间限制:  1000ms 内存限制:  65536kB 描述 Farmer John wants to connect his N (1 <= N ...

  3. csu-2018年11月月赛Round2-div1题解

    csu-2018年11月月赛Round2-div1题解 A(2191):Wells的积木游戏 Description Wells有一堆N个积木,标号1~N,每个标号只出现一次 由于Wells是手残党, ...

  4. csu-2018年11月月赛Round2-div2题解

    csu-2018年11月月赛Round2-div2题解 A(2193):昆虫繁殖 Description 科学家在热带森林中发现了一种特殊的昆虫,这种昆虫的繁殖能力很强.每对成虫过x个月产y对卵,每对 ...

  5. usaco 2008 月赛 lites 开关灯 题解

      题目:     Farmer John尝试通过和奶牛们玩益智玩具来保持他的奶牛们思维敏捷. 其中一个大型玩具是 牛栏中的灯. N (2 <= N <= 100,000) 头奶牛中的每一 ...

  6. USACO全部月赛及GateWay数据

    月赛: 以07年open为例,网站如下 http://contest.usaco.org/OPEN07 其他的格式是http://contest.usaco.org/月份(月份的英文前三位,比如1月是 ...

  7. USACO Section 1.3 题解 (洛谷OJ P1209 P1444 P3650 P2693)

    usaco ch1.4 sort(d , d + c, [](int a, int b) -> bool { return a > b; }); 生成与过滤 generator&& ...

  8. 洛谷10月月赛II题解

    [咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...

  9. BZOJ Lydsy5月月赛 ADG题解

    题目链接 BZOJ5月月赛 题解 好弱啊QAQ只写出三题 A 判断多干个数乘积是否是某个数的倍数有很多方法,比较常用的是取模,但这里并不适用,因为模数不定 会发现数都比较小,所以我们可以考虑分解质因子 ...

随机推荐

  1. Handler线程间通信

    package com.hixin.appexplorer; import java.util.List; import android.app.Activity; import android.ap ...

  2. springcloud(七):配置中心svn示例和refresh

    上一篇springcloud(六):配置中心git示例留了一个小问题,当重新修改配置文件提交后,客户端获取的仍然是修改前的信息,这个问题我们先放下,待会再讲.国内很多公司都使用的svn来做代码的版本控 ...

  3. Flight学习(一)

    翻看git时看到有新消息提示,点进去第一个就是Flight,那么今天就简单来翻译和了解一下这个框架吧,锻炼下自己的英文文档阅读能力,同时也熟悉下JavaScript.时间太赶,难免出现翻译失误和错误, ...

  4. (转) Java RMI 框架(远程方法调用)

    "原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://haolloyin.blog.51cto.com/1177454/33 ...

  5. Java常用类之【日期相关类】

    一.日期类 Java语言提供了2个类来处理日期 Date类 Date类以毫秒来表示特定的日期 构造方法 Date date = new Date(); System.out.println(date) ...

  6. JavaScript概念总结:作用域、闭包、对象与原型链

    1 JavaScript变量作用域 1.1 函数作用域 没有块作用域:即作用域不是以{}包围的,其作用域完成由函数来决定,因而if /for等语句中的花括号不是独立的作用域. 如前述,JS的在函数中定 ...

  7. dedecms列表页调用子栏目列表,织梦首页调用栏目的子栏目标签代码

    dedecms列表页调用子栏目列表,织梦首页调用栏目的子栏目标签代码. dedecms列表页调用子栏目列表标签: {dede:channelartlist type='sun' }<a href ...

  8. [UWP]用Shape做动画(2):使用与扩展PointAnimation

    上一篇几乎都在说DoubleAnimation的应用,这篇说说PointAnimation. 1. 使用PointAnimation 使用PointAnimation可以让Shape变形,但实际上没看 ...

  9. Linq之关键字基本查询

    子句 说明 from 指定数据源和范围变量(类似于迭代变量). where 根据一个或多个由逻辑"与"和逻辑"或"运算符(&& 或 ||)分隔的 ...

  10. 关于MATLAB处理大数据坐标文件2017528

    第一次提交数据 增加了部分特征 3000数据测试中得分99 但是10万数据出现过拟化现象,正确率下降 总结:1.某些特征数据本身波动不大应该考虑放弃 2.一些特征虽然表面觉得差异显而易见,但是数据表达 ...