dplyr and data.table are amazing packages that make data manipulation in R fun. Both packages have their strengths. While dplyr is more elegant and resembles natural language, data.table is succinct and we can do a lot withdata.table in just a single line. Further, data.table is, in some cases, faster (see benchmark here) and it may be a go-to package when performance and memory are constraints. You can read comparison of dplyr and data.tablefrom Stack Overflow and Quora.

You can get reference manual and vignettes for data.table here and for dplyrhere. You can read other tutorial about dplyr published at DataScience+

Background

I am a long time dplyr and data.table user for my data manipulation tasks. For someone who knows one of these packages, I thought it could help to show codes that perform the same tasks in both packages to help them quickly study the other. If you know either package and have interest to study the other, this post is for you.

dplyr

dplyr has 5 verbs which make up the majority of the data manipulation tasks we perform. Select: used to select one or more columns; Filter: used to select some rows based on specific criteria; Arrange: used to sort data based on one or more columns in ascending or descending order; Mutate: used to add new columns to our data; Summarise: used to create chunks from our data.

data.table

data.table has a very succinct general format: DT[i, j, by], which is interpreted as: Take DT, subset rows using i, then calculate j grouped by by.

Data manipulation

First we will install some packages for our project.

library(dplyr)
library(data.table)
library(lubridate)
library(jsonlite)
library(tidyr)
library(ggplot2)
library(compare)

The data we will use here is from DATA.GOV. It is Medicare Hospital Spending by Claim and it can be downloaded from here. Let’s download the data in JSONformat using the fromJSON function from the jsonlite package. Since JSON is a very common data format used for asynchronous browser/server communication, it is good if you understand the lines of code below used to get the data. You can get an introductory tutorial on how to use the jsonlite package to work with JSON data here and here. However, if you want to focus only on the data.table and dplyr commands, you can safely just run the codes in the two cells below and ignore the details.

spending=fromJSON("https://data.medicare.gov/api/views/nrth-mfg3/rows.json?accessType=DOWNLOAD")
names(spending)
"meta" "data" meta=spending$meta
hospital_spending=data.frame(spending$data)
colnames(hospital_spending)=make.names(meta$view$columns$name)
hospital_spending=select(hospital_spending,-c(sid:meta)) glimpse(hospital_spending)
Observations: 70598
Variables:
$ Hospital.Name (fctr) SOUTHEAST ALABAMA MEDICAL CENT...
$ Provider.Number. (fctr) 010001, 010001, 010001, 010001...
$ State (fctr) AL, AL, AL, AL, AL, AL, AL, AL...
$ Period (fctr) 1 to 3 days Prior to Index Hos...
$ Claim.Type (fctr) Home Health Agency, Hospice, I...
$ Avg.Spending.Per.Episode..Hospital. (fctr) 12, 1, 6, 160, 1, 6, 462, 0, 0...
$ Avg.Spending.Per.Episode..State. (fctr) 14, 1, 6, 85, 2, 9, 492, 0, 0,...
$ Avg.Spending.Per.Episode..Nation. (fctr) 13, 1, 5, 117, 2, 9, 532, 0, 0...
$ Percent.of.Spending..Hospital. (fctr) 0.06, 0.01, 0.03, 0.84, 0.01, ...
$ Percent.of.Spending..State. (fctr) 0.07, 0.01, 0.03, 0.46, 0.01, ...
$ Percent.of.Spending..Nation. (fctr) 0.07, 0.00, 0.03, 0.58, 0.01, ...
$ Measure.Start.Date (fctr) 2014-01-01T00:00:00, 2014-01-0...
$ Measure.End.Date (fctr) 2014-12-31T00:00:00, 2014-12-3...

As shown above, all columns are imported as factors and let’s change the columns that contain numeric values to numeric.

cols = 6:11; # These are the columns to be changed to numeric.
hospital_spending[,cols] <- lapply(hospital_spending[,cols], as.numeric)

The last two columns are measure start date and measure end date. So, let’s use the lubridate package to correct the classes of these columns.

cols = 12:13; # These are the columns to be changed to dates.
hospital_spending[,cols] <- lapply(hospital_spending[,cols], ymd_hms)

Now, let’s check if the columns have the classes we want.

sapply(hospital_spending, class)
$Hospital.Name
"factor"
$Provider.Number.
"factor"
$State
"factor"
$Period
"factor"
$Claim.Type
"factor"
$Avg.Spending.Per.Episode..Hospital.
"numeric"
$Avg.Spending.Per.Episode..State.
"numeric"
$Avg.Spending.Per.Episode..Nation.
"numeric"
$Percent.of.Spending..Hospital.
"numeric"
$Percent.of.Spending..State.
"numeric"
$Percent.of.Spending..Nation.
"numeric"
$Measure.Start.Date
"POSIXct" "POSIXt"
$Measure.End.Date
"POSIXct" "POSIXt"

Create data table

We can create a data.table using the data.table() function.

hospital_spending_DT = data.table(hospital_spending)
class(hospital_spending_DT)
"data.table" "data.frame"

Select certain columns of data

To select columns, we use the verb select in dplyr. In data.table, on the other hand, we can specify the column names.

Selecting one variable

Let’s selet the “Hospital Name” variable

from_dplyr = select(hospital_spending, Hospital.Name)
from_data_table = hospital_spending_DT[,.(Hospital.Name)]

Now, let’s compare if the results from dplyr and data.table are the same.

compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes

Removing one variable

from_dplyr = select(hospital_spending, -Hospital.Name)
from_data_table = hospital_spending_DT[,!c("Hospital.Name"),with=FALSE]
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes

we can also use := function which modifies the input data.table by reference.
We will use the copy() function, which deep copies the input object and therefore any subsequent update by reference operations performed on the copied object will not affect the original object.

DT=copy(hospital_spending_DT)
DT=DT[,Hospital.Name:=NULL]
"Hospital.Name"%in%names(DT)FALSE

We can also remove many variables at once similarly:

DT=copy(hospital_spending_DT)
DT=DT[,c("Hospital.Name","State","Measure.Start.Date","Measure.End.Date"):=NULL]
c("Hospital.Name","State","Measure.Start.Date","Measure.End.Date")%in%names(DT)
FALSE FALSE FALSE FALSE

Selecting multiple variables

Let’s select the variables:
Hospital.Name,State,Measure.Start.Date,and Measure.End.Date.

from_dplyr = select(hospital_spending, Hospital.Name,State,Measure.Start.Date,Measure.End.Date)
from_data_table = hospital_spending_DT[,.(Hospital.Name,State,Measure.Start.Date,Measure.End.Date)]
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes

Dropping multiple variables

Now, let’s remove the variables Hospital.Name,State,Measure.Start.Date,and Measure.End.Date from the original data frame hospital_spending and the data.table hospital_spending_DT.

from_dplyr = select(hospital_spending, -c(Hospital.Name,State,Measure.Start.Date,Measure.End.Date))
from_data_table = hospital_spending_DT[,!c("Hospital.Name","State","Measure.Start.Date","Measure.End.Date"),with=FALSE]
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes

dplyr has functions contains()starts_with() and, ends_with() which we can use with the verb select. In data.table, we can use regular expressions. Let’s select columns that contain the word Date to demonstrate by example.

from_dplyr = select(hospital_spending,contains("Date"))
from_data_table = subset(hospital_spending_DT,select=grep("Date",names(hospital_spending_DT)))
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes names(from_dplyr)
"Measure.Start.Date" "Measure.End.Date"

Rename columns

setnames(hospital_spending_DT,c("Hospital.Name", "Measure.Start.Date","Measure.End.Date"), c("Hospital","Start_Date","End_Date"))
names(hospital_spending_DT)
"Hospital" "Provider.Number." "State" "Period" "Claim.Type" "Avg.Spending.Per.Episode..Hospital." "Avg.Spending.Per.Episode..State." "Avg.Spending.Per.Episode..Nation." "Percent.of.Spending..Hospital." "Percent.of.Spending..State." "Percent.of.Spending..Nation." "Start_Date" "End_Date" hospital_spending = rename(hospital_spending,Hospital= Hospital.Name, Start_Date=Measure.Start.Date,End_Date=Measure.End.Date)
compare(hospital_spending,hospital_spending_DT, allowAll=TRUE)
TRUE
dropped attributes

Filtering data to select certain rows

To filter data to select specific rows, we use the verb filter from dplyr with logical statements that could include regular expressions. In data.table, we need the logical statements only.

Filter based on one variable

from_dplyr = filter(hospital_spending,State=='CA') # selecting rows for California
from_data_table = hospital_spending_DT[State=='CA']
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes

Filter based on multiple variables

from_dplyr = filter(hospital_spending,State=='CA' & Claim.Type!="Hospice")
from_data_table = hospital_spending_DT[State=='CA' & Claim.Type!="Hospice"]
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes
from_dplyr = filter(hospital_spending,State %in% c('CA','MA',"TX"))
from_data_table = hospital_spending_DT[State %in% c('CA','MA',"TX")]
unique(from_dplyr$State)
CA MA TX compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes

Order data

We use the verb arrange in dplyr to order the rows of data. We can order the rows by one or more variables. If we want descending, we have to use desc()as shown in the examples.The examples are self-explanatory on how to sort in ascending and descending order. Let’s sort using one variable.

Ascending

from_dplyr = arrange(hospital_spending, State)
from_data_table = setorder(hospital_spending_DT, State)
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes

Descending

from_dplyr = arrange(hospital_spending, desc(State))
from_data_table = setorder(hospital_spending_DT, -State)
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes

Sorting with multiple variables

Let’s sort with State in ascending order and End_Date in descending order.

from_dplyr = arrange(hospital_spending, State,desc(End_Date))
from_data_table = setorder(hospital_spending_DT, State,-End_Date)
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes

Adding/updating column(s)

In dplyr we use the function mutate() to add columns. In data.table, we can Add/update a column by reference using := in one line.

from_dplyr = mutate(hospital_spending, diff=Avg.Spending.Per.Episode..State. - Avg.Spending.Per.Episode..Nation.)
from_data_table = copy(hospital_spending_DT)
from_data_table = from_data_table[,diff := Avg.Spending.Per.Episode..State. - Avg.Spending.Per.Episode..Nation.]
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
sorted
renamed rows
dropped row names
dropped attributes
from_dplyr = mutate(hospital_spending, diff1=Avg.Spending.Per.Episode..State. - Avg.Spending.Per.Episode..Nation.,diff2=End_Date-Start_Date)
from_data_table = copy(hospital_spending_DT)
from_data_table = from_data_table[,c("diff1","diff2") := list(Avg.Spending.Per.Episode..State. - Avg.Spending.Per.Episode..Nation.,diff2=End_Date-Start_Date)]
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
dropped attributes

Summarizing columns

We can use the summarize() function from dplyr to create summary statistics.

summarize(hospital_spending,mean=mean(Avg.Spending.Per.Episode..Nation.))
mean 8.772727 hospital_spending_DT[,.(mean=mean(Avg.Spending.Per.Episode..Nation.))]
mean 8.772727 summarize(hospital_spending,mean=mean(Avg.Spending.Per.Episode..Nation.),
maximum=max(Avg.Spending.Per.Episode..Nation.),
minimum=min(Avg.Spending.Per.Episode..Nation.),
median=median(Avg.Spending.Per.Episode..Nation.))
mean maximum minimum median
8.77 19 1 8.5 hospital_spending_DT[,.(mean=mean(Avg.Spending.Per.Episode..Nation.),
maximum=max(Avg.Spending.Per.Episode..Nation.),
minimum=min(Avg.Spending.Per.Episode..Nation.),
median=median(Avg.Spending.Per.Episode..Nation.))]
mean maximum minimum median
8.77 19 1 8.5

We can calculate our summary statistics for some chunks separately. We use the function group_by() in dplyr and in data.table, we simply provide by.

head(hospital_spending_DT[,.(mean=mean(Avg.Spending.Per.Episode..Hospital.)),by=.(Hospital)])

mygroup= group_by(hospital_spending,Hospital)
from_dplyr = summarize(mygroup,mean=mean(Avg.Spending.Per.Episode..Hospital.))
from_data_table=hospital_spending_DT[,.(mean=mean(Avg.Spending.Per.Episode..Hospital.)), by=.(Hospital)]
compare(from_dplyr,from_data_table, allowAll=TRUE) TRUE
sorted
renamed rows
dropped row names
dropped attributes

We can also provide more than one grouping condition.

head(hospital_spending_DT[,.(mean=mean(Avg.Spending.Per.Episode..Hospital.)),
by=.(Hospital,State)])

mygroup= group_by(hospital_spending,Hospital,State)
from_dplyr = summarize(mygroup,mean=mean(Avg.Spending.Per.Episode..Hospital.))
from_data_table=hospital_spending_DT[,.(mean=mean(Avg.Spending.Per.Episode..Hospital.)), by=.(Hospital,State)]
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
sorted
renamed rows
dropped row names
dropped attributes

Chaining

With both dplyr and data.table, we can chain functions in succession. In dplyr, we use pipes from the magrittr package with %>% which is really cool. %>% takes the output from one function and feeds it to the first argument of the next function. In data.table, we can use %>% or [ for chaining.

from_dplyr=hospital_spending%>%group_by(Hospital,State)%>%summarize(mean=mean(Avg.Spending.Per.Episode..Hospital.))
from_data_table=hospital_spending_DT[,.(mean=mean(Avg.Spending.Per.Episode..Hospital.)), by=.(Hospital,State)]
compare(from_dplyr,from_data_table, allowAll=TRUE)
TRUE
sorted
renamed rows
dropped row names
dropped attributes
hospital_spending%>%group_by(State)%>%summarize(mean=mean(Avg.Spending.Per.Episode..Hospital.))%>%
arrange(desc(mean))%>%head(10)%>%
mutate(State = factor(State,levels = State[order(mean,decreasing =TRUE)]))%>%
ggplot(aes(x=State,y=mean))+geom_bar(stat='identity',color='darkred',fill='skyblue')+
xlab("")+ggtitle('Average Spending Per Episode by State')+
ylab('Average')+ coord_cartesian(ylim = c(3800, 4000))

hospital_spending_DT[,.(mean=mean(Avg.Spending.Per.Episode..Hospital.)),
by=.(State)][order(-mean)][1:10]%>%
mutate(State = factor(State,levels = State[order(mean,decreasing =TRUE)]))%>%
ggplot(aes(x=State,y=mean))+geom_bar(stat='identity',color='darkred',fill='skyblue')+
xlab("")+ggtitle('Average Spending Per Episode by State')+
ylab('Average')+ coord_cartesian(ylim = c(3800, 4000))

Summary

In this blog post, we saw how we can perform the same tasks using data.tableand dplyr packages. Both packages have their strengths. While dplyr is more elegant and resembles natural language, data.table is succinct and we can do a lot with data.table in just a single line. Further, data.table is, in some cases, faster and it may be a go-to package when performance and memory are the constraints.

You can get the code for this blog post at my GitHub account.

This is enough for this post. If you have any questions or feedback, feel free to leave a comment.

转自:http://datascienceplus.com/best-packages-for-data-manipulation-in-r/

Best packages for data manipulation in R的更多相关文章

  1. Data manipulation primitives in R and Python

    Data manipulation primitives in R and Python Both R and Python are incredibly good tools to manipula ...

  2. Data Manipulation with dplyr in R

    目录 select The filter and arrange verbs arrange filter Filtering and arranging Mutate The count verb ...

  3. The dplyr package has been updated with new data manipulation commands for filters, joins and set operations.(转)

    dplyr 0.4.0 January 9, 2015 in Uncategorized I’m very pleased to announce that dplyr 0.4.0 is now av ...

  4. An Introduction to Stock Market Data Analysis with R (Part 1)

    Around September of 2016 I wrote two articles on using Python for accessing, visualizing, and evalua ...

  5. 7 Tools for Data Visualization in R, Python, and Julia

    7 Tools for Data Visualization in R, Python, and Julia Last week, some examples of creating visualiz ...

  6. java.sql.SQLException: Can not issue data manipulation statements with executeQuery().

    1.错误描写叙述 java.sql.SQLException: Can not issue data manipulation statements with executeQuery(). at c ...

  7. Can not issue data manipulation statements with executeQuery()错误解决

    转: Can not issue data manipulation statements with executeQuery()错误解决 2012年03月27日 15:47:52 katalya 阅 ...

  8. 数据库原理及应用-SQL数据操纵语言(Data Manipulation Language)和嵌入式SQL&存储过程

    2018-02-19 18:03:54 一.数据操纵语言(Data Manipulation Language) 数据操纵语言是指插入,删除和更新语言. 二.视图(View) 数据库三级模式,两级映射 ...

  9. Can not issue data manipulation statements with executeQuery().解决方案

    这个错误提示是说无法发行sql语句到指定的位置 错误写法: 正确写法: excuteQuery是查询语句,而我要调用的是更新的语句,所以这样数据库很为难到底要干嘛,实际我想用的是更新,但是我写成了查询 ...

随机推荐

  1. 1132: 零起点学算法39——多组测试数据(a+b)

    1132: 零起点学算法39--多组测试数据(a+b) Time Limit: 1 Sec  Memory Limit: 64 MB   64bit IO Format: %lldSubmitted: ...

  2. ubuntu 14.04 64位安装HTK3.5

    1.http://htk.eng.cam.ac.uk/download.shtml 官网下载HTK source code以及HDecode 2.分别解压HTK-3.5.beta-2.tar.gz.H ...

  3. C# WebClient、jQuery ajax jsonp实现跨域

    WebClient 无传输数据获取 Uri uri = new Uri(allURL); WebClient wc = new WebClient(); wc.Encoding = System.Te ...

  4. 易汇金在线支付接口实例。ecshop和shopex,shopnc,iwebshop下完美无错(最新)

    最近为客户的一个在线商城做了一个易汇金在线支付的接口.跟大家分享一下. 1 首先可以模仿其他的接口,比如支付宝,财付通等的接口,构建模块功能文件和语言文件. 功能模块构建: /includes/mod ...

  5. ZOJ 3195 Design the city 题解

    这个题目大意是: 有N个城市,编号为0~N-1,给定N-1条无向带权边,Q个询问,每个询问求三个城市连起来的最小权值. 多组数据 每组数据  1 < N < 50000  1 < Q ...

  6. C++ 编译报错discards qualifiers [-fpermissive]

    声明了一个类 class Card { public: Card(const string&); int m_value; char m_suit; private: const static ...

  7. Azure IoT 技术研究系列4-Azure IoT Hub的配额及缩放级别

    上两篇博文中,我们介绍了将设备注册到Azure IoT Hub,设备到云.云到设备之间的通信: Azure IoT 技术研究系列2-设备注册到Azure IoT Hub Azure IoT 技术研究系 ...

  8. 关于Java中String类的hashCode方法

    首先来看一下String中hashCode方法的实现源码 public int hashCode() { int h = hash; if (h == 0 && value.lengt ...

  9. 揭秘Kafka高性能架构之道 - Kafka设计解析(六)

    原创文章,同步首发自作者个人博客.转载请务必在文章开头处以超链接形式注明出处http://www.jasongj.com/kafka/high_throughput/ 摘要 上一篇文章<Kafk ...

  10. vscode同步设置&扩展插件

    首先安装同步插件: Settings Sync 第二部进入你的github如图:  打开设置选项: 新建一个token: 如图:  记住这个token值 转到vscode 按shift+alt +u ...