Wormholes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 36717   Accepted: 13438

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms
comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N,
M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to
F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, F. F farm descriptions follow.

Line 1 of each farm: Three space-separated integers respectively: N,
M
, and W

Lines 2..M+1 of each farm: Three space-separated numbers (S,
E
, T) that describe, respectively: a bidirectional path between
S
and E that requires T seconds to traverse. Two fields might be connected by more than one path.

Lines M+2..M+W+1 of each farm: Three space-separated numbers (S,
E, T) that describe, respectively: A one way path from S to
E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

  1. 2
  2. 3 3 1
  3. 1 2 2
  4. 1 3 4
  5. 2 3 1
  6. 3 1 3
  7. 3 2 1
  8. 1 2 3
  9. 2 3 4
  10. 3 1 8

Sample Output

  1. NO
  2. YES

Hint

For farm 1, FJ cannot travel back in time.

For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

Source

70ms

  1. #include<iostream> //79ms
  2. #include<cstdio>
  3. #include<cstring>
  4. #include<cmath>
  5. #define INF 10000000
  6.  
  7. using namespace std;
  8.  
  9. struct node
  10. {
  11. int u,v,w;
  12. } edge[5500];
  13. int low[5500];
  14. int n,m,z;
  15. int num=0;
  16. int Bellman()
  17. {
  18. for(int i=0; i<=n; i++)
  19. low[i]=INF;
  20.  
  21. for(int i=0; i<n-1; i++)
  22. {
  23. int flag=0;
  24. for(int j=0; j<num; j++)
  25. {
  26. if(low[edge[j].u]+edge[j].w<low[edge[j].v])
  27. {
  28. low[edge[j].v]=low[edge[j].u]+edge[j].w;
  29. flag=1;
  30. }
  31. }
  32. if(flag==0) //存在负权回路
  33. break;
  34. }
  35.  
  36. for(int j=0; j<num; j++) //推断负权回路
  37. {
  38. if(low[edge[j].u]+edge[j].w<low[edge[j].v])
  39. return 1;
  40. }
  41. return 0;
  42. }
  43. int main()
  44. {
  45. int T;
  46. scanf("%d",&T);
  47. while(T--)
  48. {
  49. scanf("%d%d%d",&n,&m,&z);
  50. int a,b,c;
  51. num=0;
  52. for(int i=1; i<=m; i++)
  53. {
  54. scanf("%d%d%d",&a,&b,&c);
  55. edge[num].u=a;
  56. edge[num].v=b;
  57. edge[num++].w=c;
  58.  
  59. edge[num].u=b;
  60. edge[num].v=a;
  61. edge[num++].w=c;
  62. }
  63.  
  64. for(int i=1; i<=z; i++)
  65. {
  66. scanf("%d%d%d",&a,&b,&c);
  67. edge[num].u=a;
  68. edge[num].v=b;
  69. edge[num++].w=-c;
  70. }
  71. if(Bellman())
  72. printf("YES\n");
  73. else
  74. printf("NO\n");
  75. }
  76. }

700ms

  1. #include<iostream> //挨个点遍历
  2. #include<cstdio>
  3. #include<cstring>
  4. #include<cmath>
  5. #define INF 0x3f3f3f3f
  6.  
  7. using namespace std;
  8.  
  9. struct node
  10. {
  11. int u,v,w;
  12. } edge[5500];
  13. int low[550];
  14. int n,m,z;
  15. int num=0;
  16. int Bellman(int u0)
  17. {
  18. for(int i=0; i<=n; i++)
  19. low[i]=INF;
  20. low[u0]=0;
  21. for(int i=0; i<n; i++) //递推n次,让其构成环来推断
  22. {
  23. int flag=0;
  24. for(int j=0; j<num; j++)
  25. {
  26. if(low[edge[j].u]!=INF&&low[edge[j].u]+edge[j].w<low[edge[j].v])
  27. {
  28. low[edge[j].v]=low[edge[j].u]+edge[j].w;
  29. flag=1;
  30. }
  31. }
  32. if(flag==0) //存在负权回路(降低时间)
  33. break;
  34. }
  35. if(low[u0]<0)
  36. return 1;
  37. return 0;
  38. }
  39. int main()
  40. {
  41. int T;
  42. scanf("%d",&T);
  43. while(T--)
  44. {
  45. scanf("%d%d%d",&n,&m,&z);
  46. int a,b,c;
  47. num=0;
  48. for(int i=1; i<=m; i++)
  49. {
  50. scanf("%d%d%d",&a,&b,&c);
  51. edge[num].u=a;
  52. edge[num].v=b;
  53. edge[num++].w=c;
  54.  
  55. edge[num].u=b;
  56. edge[num].v=a;
  57. edge[num++].w=c;
  58. }
  59.  
  60. for(int i=1; i<=z; i++)
  61. {
  62. scanf("%d%d%d",&a,&b,&c);
  63. edge[num].u=a;
  64. edge[num].v=b;
  65. edge[num++].w=-c;
  66. }
  67. int biao=1;
  68. for(int i=1; i<=n; i++)
  69. {
  70. if(Bellman(i))
  71. {
  72. printf("YES\n");
  73. biao=0;
  74. break;
  75. }
  76. }
  77. if(biao)
  78. printf("NO\n");
  79. }
  80. }
  81. /*
  82. 780ms
  83. #include<iostream>
  84. #include<cstdio>
  85. #include<cstring>
  86. #include<cmath>
  87. #define INF 0x3f3f3f3f
  88.  
  89. using namespace std;
  90.  
  91. struct node
  92. {
  93. int u,v,w;
  94. } edge[5500];
  95. int low[5500];
  96. int n,m,z;
  97. int num=0;
  98. int Bellman(int u0)
  99. {
  100. for(int i=0; i<=n; i++)
  101. low[i]=INF;
  102.  
  103. low[u0]=0; //初始化
  104. for(int i=0; i<n-1; i++) //n-1次
  105. {
  106. int flag=0;
  107. for(int j=0; j<num; j++)
  108. {
  109. if(low[edge[j].u]!=INF&&low[edge[j].u]+edge[j].w<low[edge[j].v]) //不同点
  110. { //存在low[edge[j].u]!=INF,就必须有low[u0]=0;初始化
  111. low[edge[j].v]=low[edge[j].u]+edge[j].w;
  112. flag=1;
  113. }
  114. }
  115. if(flag==0) //存在负权回路
  116. break;
  117. }
  118.  
  119. for(int j=0; j<num; j++)
  120. {
  121. if(low[edge[j].u]!=INF&&low[edge[j].u]+edge[j].w<low[edge[j].v])
  122. return 1;
  123. }
  124. return 0;
  125. }
  126. int main()
  127. {
  128. int T;
  129. scanf("%d",&T);
  130. while(T--)
  131. {
  132. scanf("%d%d%d",&n,&m,&z);
  133. int a,b,c;
  134. num=0;
  135. for(int i=1; i<=m; i++)
  136. {
  137. scanf("%d%d%d",&a,&b,&c);
  138. edge[num].u=a;
  139. edge[num].v=b;
  140. edge[num++].w=c;
  141.  
  142. edge[num].u=b;
  143. edge[num].v=a;
  144. edge[num++].w=c;
  145. }
  146.  
  147. for(int i=1; i<=z; i++)
  148. {
  149. scanf("%d%d%d",&a,&b,&c);
  150. edge[num].u=a;
  151. edge[num].v=b;
  152. edge[num++].w=-c;
  153. }
  154. int biao=1;
  155. for(int i=1; i<=n; i++)
  156. {
  157. if(Bellman(i))
  158. {
  159. printf("YES\n");
  160. biao=0;
  161. break;
  162. }
  163. }
  164. if(biao)
  165. printf("NO\n");
  166. }
  167. }
  168. */

poj 3259 bellman最短路推断有无负权回路的更多相关文章

  1. Wormholes 最短路判断有无负权值

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  2. UVA11090 Going in Cycle!! (二分+SPFA推断有无负权)

    Problem G: Going in Cycle!! Input: standard input Output: standard output You are given a weighted d ...

  3. [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29971   Accepted: 10844 Descr ...

  4. POJ 3259 Wormholes(最短路径,求负环)

    POJ 3259 Wormholes(最短路径,求负环) Description While exploring his many farms, Farmer John has discovered ...

  5. POJ 3259 Wormholes Bellman_ford负权回路

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  6. Spfa 求含负权边的最短路 + 判断是否存在负权回路

    在Bellman-Ford算法之后,我们总算迎来了spfa算法,其实就如同堆优化Dijkstra算法之于朴素版Dijkstra算法,spfa算法仅仅是对Bellman-Ford算法的一种优化,但是在形 ...

  7. ZOJ 3391 Haunted Graveyard(最短路负权回路)题解

    题意:好长...从(0,0)走到(w-1,h-1),墓碑不能走,走到传送门只能进去不能走到其他地方,经过传送门时间会变化w(可能为负),其他地方都能上下左右走.如果能无限返老还童输出Never,走不到 ...

  8. Bellman-ford算法与SPFA算法思想详解及判负权环(负权回路)

    我们先看一下负权环为什么这么特殊:在一个图中,只要一个多边结构不是负权环,那么重复经过此结构时就会导致代价不断增大.在多边结构中唯有负权环会导致重复经过时代价不断减小,故在一些最短路径算法中可能会凭借 ...

  9. bellman-ford(可判负权回路+记录路径)

    #include<iostream> #include<cstdio> using namespace std; #define MAX 0x3f3f3f3f #define ...

随机推荐

  1. POJ 2299 离散化线段树

    点击打开链接 Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 40827   Accepted ...

  2. ssh tunnel 上网

    用DNS隧道实现免费上网 大多数机场.酒店之类场所,当你输入一个网址比如www.google.com时,会弹出一个页面要你输入帐号密码才能上网.这个时候DNS能正确解析,但是上网要付费认证. 可以通过 ...

  3. MVC/MVP/MVVM区别——MVVM就是angular,视图和数据双向绑定

    摘自:http://www.ruanyifeng.com/blog/2015/02/mvcmvp_mvvm.html 一.MVC MVC模式的意思是,软件可以分成三个部分. 视图(View):用户界面 ...

  4. 信息安全-加密:SM4.0

    ylbtech-信息安全-加密:SM4.0 SM4.0(原名SMS4.0)是中华人民共和国政府采用的一种分组密码标准,由国家密码管理局于2012年3月21日发布.相关标准为“GM/T 0002-201 ...

  5. Comparable与Comparator区别(实现和使用)

    一.Comparable接口 1.Comparable接口是什么? 此接口强行对实现它的每个类的对象进行整体排序.此排序被称为该类的自然排序 ,类的 compareTo 方法被称为它的自然比较方法 . ...

  6. centOS 7安装mysql5.6

    方法二:官网下载安装mysql-server # wget http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm # rp ...

  7. DirectUI界面编程(六)实现右键弹出菜单

    本节向大家介绍一下右键弹出菜单是如何实现的.效果如下,在窗口中点击鼠标右键弹出菜单,点击菜单项能够响应菜单点击事件. 使用Duilib库实现的弹出菜单,实际上也是一个Windows窗口,因此我们需要创 ...

  8. intell-

    intellect: n.[U, C] the ability to think in a logical way and understand things, especially at an ad ...

  9. CorelDRAW X6最新注册激活机制

    最近购买CorelDRAW X6的小伙伴可能对如何注册激活软件存在疑惑,下面小编一步步教您如何快速激活CorelDRAW X6. CorelDRAW X6最新注册机制如下: 1.关注“Corel服务中 ...

  10. 常用的GNOME Shell 扩展

    GNOME Shell(即GNOME 3)桌面环境最初进军Linux世界时,众多批评人士指出其灵活性有所欠缺.当初外观有所突破的GNOME确实会给生产效率带来一些影响,然而它多年来一直默默通过多种方式 ...