题目链接:

https://www.luogu.org/problemnew/show/P3813

题目:

给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w。

在这个矩阵中你需要在每个格子中填入 1..m中的某个数。

给这个矩阵填数的时候有一些限制,给定 n 个该矩阵的子矩阵,以及该子矩阵的最大值 v,要求你所填的方案满足该子矩阵的最大值为 v。

现在,你的任务是求出有多少种填数的方案满足 n 个限制。

两种方案是不一样的当且仅当两个方案至少存在一个格子上有不同的数。由于答案可能很大,你只需要输出答案 mod 1,000,000,007

题解:

对于每个格,能填的最⼤值是 $min(m,v_i)$,$v_i$ 为覆盖到该点的所有⼩矩阵的预设答案,这就是总⽅案数。

考虑容斥原理,奇减偶加。总方案数-一个不合法的方案数+两个不合法的方案数...

离散化后 $2^n$ 枚举⼦集,然后对于选中的矩阵为 $min(v_i−1)$,即强制让选中的⼦矩阵的最⼤值⼩于预设的答案(总方案里一个矩阵里所有的元素都小于等于这个矩阵的v)

这⼀步由于离散化的原因,可以直接暴⼒ for 遍历所有在⼦ 矩阵内的位置。 复杂度:$O(2^n n^3)$

#include<algorithm>
#include<cstring>
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll; const int N=;
const ll mo=1e9+;
int h,w,m,n,vx,vy,vp;
int ma[N][],dx[N],dy[N],mv[N],a[N][N],mp[N][N];
ll vv[N],tong[N];
inline int read(){
char ch=getchar();int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
ll qpow(ll a,ll b){
ll re=;
for (;b;b>>=,a=a*a%mo) if (b&) re=re*a%mo;
return re;
}
int main()
{
int T=read();
while (T--)
{
h=read();w=read();m=read();n=read();
vx=vy=vp=;
dx[++vx]=;dx[++vx]=h+;
dy[++vy]=;dy[++vy]=w+;
vv[++vp]=m;
for (int i=;i<=n;i++)
{
ma[i][]=read();ma[i][]=read();ma[i][]=read();ma[i][]=read();mv[i]=read();
dx[++vx]=ma[i][];dx[++vx]=ma[i][]+;
dy[++vy]=ma[i][];dy[++vy]=ma[i][]+;
vv[++vp]=mv[i];vv[++vp]=mv[i]-;
}
sort(dx+,dx++vx);
sort(dy+,dy++vy);
sort(vv+,vv++vp);
vx=unique(dx+,dx++vx)-dx-;
vy=unique(dy+,dy++vy)-dy-;
vp=unique(vv+,vv++vp)-vv-;
for (int i=;i<vx;i++)//<号不是<=号,因为最后一个是无效的位置
for (int j=;j<vy;j++) a[i][j]=(dx[i+]-dx[i])*(dy[j+]-dy[j]);
for (int i=;i<=n;i++)
{
ma[i][]=lower_bound(dx+,dx++vx,ma[i][])-dx;
ma[i][]=lower_bound(dx+,dx++vx,ma[i][]+)-dx;
ma[i][]=lower_bound(dy+,dy++vy,ma[i][])-dy;
ma[i][]=lower_bound(dy+,dy++vy,ma[i][]+)-dy;
mv[i]=lower_bound(vv+,vv++vp,mv[i])-vv;
}
ll ans=;
for (int S=;S<(<<n);S++)
{
for (int i=;i<vx;i++)
for (int j=;j<vy;j++) mp[i][j]=vp;
ll s=;
for (int i=;i<n;i++)
{
int v=mv[i+];
if (S>>i&) v--,s=-s;
for (int j=ma[i+][];j<ma[i+][];j++)
for (int k=ma[i+][];k<ma[i+][];k++) mp[j][k]=min(mp[j][k],v);
}
for (int i=;i<=vp;i++) tong[i]=;
for (int i=;i<vx;i++)
for (int j=;j<vy;j++) tong[mp[i][j]]+=a[i][j];
for (int i=;i<=vp;i++) s=s*qpow(vv[i],tong[i])%mo;
ans=(ans+s)%mo;
}
ans=(ans%mo+mo)%mo;
printf("%lld\n",ans);
}
return ;
}

[luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)的更多相关文章

  1. P3813 [FJOI2017]矩阵填数(组合数学)

    P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...

  2. P3813 [FJOI2017]矩阵填数

    传送门 矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况 考虑把每一块单独考虑然后方案再乘起来 但是这些奇怪的东西很不好考虑 所以暴力一点,直接拆成一个个小块 但是这样我 ...

  3. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  4. [BZOJ5010][FJOI2017]矩阵填数(状压DP)

    5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 45[Submit][Status][ ...

  5. bzoj5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  6. bzoj 5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  7. BZOJ5010 FJOI2017矩阵填数(容斥原理)

    如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...

  8. 【BZOJ】5010: [Fjoi2017]矩阵填数

    [算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...

  9. [FJOI2017]矩阵填数

    [Luogu3813] [LOJ2280] 写得很好的题解 \(1.\)离散化出每一块内部不互相影响的块 \(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩 ...

随机推荐

  1. C#调用mmpeg进行各种视频转换的类实例

    本文实例讲述了C#调用mmpeg进行各种视频转换的类.分享给大家供大家参考.具体如下: 这个C#类封装了视频转换所需的各种方法,基本上是围绕着如何通过mmpeg工具来进行视频转换 using Syst ...

  2. POJ 1466 最大独立点集

    思路:匈牙利 n-ans/2; // by SiriusRen #include <cstdio> #include <cstring> #define N 505 using ...

  3. RAP开发入门-运行第一个HelloWorld(二)

    环境搭建好了之后我们就可以照惯例运行第一个helloworld程序了. (ps:这里钉几个资料吧 官网开发指导:http://help.eclipse.org/indigo/index.jsp?top ...

  4. ZBrush中如何清除遮罩

    在之前的学习中我们知道在ZBrush®中如何创建遮罩,在创建遮罩时怎样进行反转来选择反选遮罩,本文将详细讲解ZBrush中如何清除遮罩,当我们利用遮罩达到预期效果时就需要将遮罩清除了:或者在做了遮罩的 ...

  5. ZBrush中如何清除画布中多余图像

    ZBrush是一款数字雕刻与绘画软件,它以强大的功能和直观的工作流程彻底改变了整个三维行业.它的简洁化.智能化和人性化的设计无不让众多用户所折服.刚接触它的用户可能会因为找不到相关命令或不熟悉而觉得它 ...

  6. Day 02 - 02 编程语言的分类

    编程语言的分类 机器语言分为: 1.机器语言 优点:执行代码效率非常快 缺点:开发效率低 2.汇编语言 优点(相对于机器语言):开发效率高 缺点(相对于机器语言):执行效率低 3.高级语言 解释型(同 ...

  7. 注解实战@Test标签

    1.创建一个Maven工程 2.点击java,右键-新建一个类 package com.course.testng; import org.testng.annotations.Test; publi ...

  8. 四则运算2(最终版)java+jps+sqlServer

    1,设计思想 (1)在java Resources里建立包和类 (2)在类里面写入方法,其中包括生成算式create()和删除算式delete()用来更新数据库中的题目 (3)Show()方法用来随机 ...

  9. Postgresql数据库的一些字符串操作函数

    今天做项目遇到客户反映了一个麻烦的事情,有一些数据存在,但就是在程序中搜索不出来,后来分析,发现问题为数据前面有几个空白字符,后来用SQL查询了一下,发现八九个数据表中,数千万条数据中有将近三百万条数 ...

  10. 洛谷P5239 回忆京都

    和 NOIP2016TG 组合数问题 差不多是一样的-- 首先要知道杨辉三角和组合数之间的关系 看一下数据范围,很明显要避免重复计算,而且查询的复杂度要非常小 一看n, m <= 1000 这明 ...