题目大意:求第k个无平方因子数是多少(无视原题干。1也是全然平方数那岂不是一个数也送不出去了?

无平方因子数(square-free number),即质因数分解之后全部质因数的次数都为1的数

首先二分答案 问题转化为求x以内有多少个无平方因子数

依据容斥原理可知 对于√x以内的全部质数 x以内的无平方因子数=无需是不论什么质数的倍数的数的数量(即x)-是至少一个质数平方倍数的数的数量+是至少两个质数平方倍数的数的数量-是至少三个质数平方倍数的数的数量...

我们回去考虑莫比乌斯函数,我们发现每个质数乘积的符号与莫比乌斯函数的符号恰好吻合!

于是我们枚举每个数,假设这个数是奇数个不同质数的乘积,那么mu为负,偶数个则mu为正。否则mu为零

故答案即Σx/(i*i)*mu[i]

大早上起来连线性筛都打不正确我也是醉了。。。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 44723
using namespace std;
int mu[M]={0,1},prime[M],tot;
bool not_prime[M];
void Linear_Shaker()
{
int i,j;
for(i=2;i<M;i++)
{
if(!not_prime[i])
mu[i]=-1,prime[++tot]=i;
for(j=1;prime[j]*i<M;j++)
{
not_prime[prime[j]*i]=1;
if(i%prime[j]==0)
{
mu[prime[j]*i]=0;
break;
}
mu[prime[j]*i]=-mu[i];
}
}
}
int Judge(int x)
{
int i,re=0;
for(i=1;i*i<=x;i++)
re+=x/(i*i)*mu[i];
return re;
}
int Bisection(int k)
{
int l=1,r=k<<1;
while(l+1<r)
{
int mid=(l>>1)+(r>>1)+(l&r&1);
if( Judge(mid)>=k )
r=mid;
else
l=mid;
}
if( Judge(l)>=k )
return l;
return r;
}
int main()
{
int T,k;
Linear_Shaker();
for(cin>>T;T;T--)
{
scanf("%d",&k);
printf("%d\n",Bisection(k) );
}
return 0;
}

BZOJ 2440 中山市选2011 全然平方数 二分答案+容斥原理+莫比乌斯反演的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  2. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  3. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  4. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  5. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  6. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  7. bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】

    二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...

  8. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  9. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

随机推荐

  1. Android 微信分享不出去?四步搞定!

    现在做的项目中集成了友盟分享,产品要求集成微信.朋友圈.QQ.QQ空间.短信这几个分享平台.按照友盟的文档集成一切都很顺利,集成成功以后测试QQ.QQ空间.短信都没有问题,唯独微信和朋友圈一直分享不出 ...

  2. Quartz中时间参数说明 即Cron表达式

    Cron表达式 Quartz使用类似于Linux下的Cron表达式定义时间规则,Cron表达式由6或7个由空格分隔的时间字段组成,如表1所示: 表1 Cron表达式时间字段 位置 时间域名 允许值 允 ...

  3. 屏蔽scrollview的滚动

    外层有scrollview时,手指移动方向跟滚动条方向相同时,会导致scrollview的滚动.此时如果不想滚动的话,可以在要接受ontouch的子视图,或者子子视图中的touch监听里加上v.get ...

  4. elasticsearch——海量文档高性能索引系统

    elasticsearch elasticsearch是一个高性能高扩展性的索引系统,底层基于apache lucene. 可结合kibana工具进行可视化. 概念: index 索引: 类似SQL中 ...

  5. CSS中的disable,hidden,readonly

    项目中有时候需要对某个input进行隐藏或者禁止修改等. 需要隐藏某个input的时候就用hidden <input hidden="true" > 如果要禁止修改in ...

  6. day07-列表类型/元组类型/字典类型/集合类型内置方法

    目录 列表类型内置方法 元组类型内置方法 字典类型内置方法 集合类型内置方法 列表类型内置方法 用来存多个元素,[]内用逗号隔开任意数据类型的元素 1. list()强制类型转换 print(list ...

  7. altera quartus 百度云分享 quartus prime 17.1 16.1 13.0

    quartus prime 17.1 标准版 链接:https://pan.baidu.com/s/10QWejKdDobVxDSqnVPJ0xQ 提取码:hhvj 复制这段内容后打开百度网盘手机Ap ...

  8. iic通讯 FPGA实现 mpu6050为例

    IIC最常用的通讯协议,但普遍用于单片机.arm这些,用FPGA实现大材小用,但对于菜鸡水平练练手很不错,考验串并转换和时序的控制.今天我就以mpu6050陀螺仪为例,实现FPGA的iic通信. 1. ...

  9. 【Linq】

    " }; var l1 = strs.ToLookup(a => "a"); //Key=a elements=1,3 var l2 = strs.ToLookup ...

  10. c++ map: 根据value逆向查找key

    #include <iostream> #include <map> #include <algorithm> #include <vector> #i ...