题目大意:求第k个无平方因子数是多少(无视原题干。1也是全然平方数那岂不是一个数也送不出去了?

无平方因子数(square-free number),即质因数分解之后全部质因数的次数都为1的数

首先二分答案 问题转化为求x以内有多少个无平方因子数

依据容斥原理可知 对于√x以内的全部质数 x以内的无平方因子数=无需是不论什么质数的倍数的数的数量(即x)-是至少一个质数平方倍数的数的数量+是至少两个质数平方倍数的数的数量-是至少三个质数平方倍数的数的数量...

我们回去考虑莫比乌斯函数,我们发现每个质数乘积的符号与莫比乌斯函数的符号恰好吻合!

于是我们枚举每个数,假设这个数是奇数个不同质数的乘积,那么mu为负,偶数个则mu为正。否则mu为零

故答案即Σx/(i*i)*mu[i]

大早上起来连线性筛都打不正确我也是醉了。。。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 44723
using namespace std;
int mu[M]={0,1},prime[M],tot;
bool not_prime[M];
void Linear_Shaker()
{
int i,j;
for(i=2;i<M;i++)
{
if(!not_prime[i])
mu[i]=-1,prime[++tot]=i;
for(j=1;prime[j]*i<M;j++)
{
not_prime[prime[j]*i]=1;
if(i%prime[j]==0)
{
mu[prime[j]*i]=0;
break;
}
mu[prime[j]*i]=-mu[i];
}
}
}
int Judge(int x)
{
int i,re=0;
for(i=1;i*i<=x;i++)
re+=x/(i*i)*mu[i];
return re;
}
int Bisection(int k)
{
int l=1,r=k<<1;
while(l+1<r)
{
int mid=(l>>1)+(r>>1)+(l&r&1);
if( Judge(mid)>=k )
r=mid;
else
l=mid;
}
if( Judge(l)>=k )
return l;
return r;
}
int main()
{
int T,k;
Linear_Shaker();
for(cin>>T;T;T--)
{
scanf("%d",&k);
printf("%d\n",Bisection(k) );
}
return 0;
}

BZOJ 2440 中山市选2011 全然平方数 二分答案+容斥原理+莫比乌斯反演的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  2. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  3. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  4. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  5. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  6. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  7. bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】

    二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...

  8. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  9. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

随机推荐

  1. Jquery 《不想工作系列》--整理一下append、prependTo、after的区别

    还有其他类似方法,以后再加,直接上代码和图 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" &q ...

  2. [ SCOI 2007 ] Perm

    \(\\\) \(Description\) 给出只包括多个\(0\text~ 9\)的数字集,求有多少个本质不同的全排列,使得组成的数字能够整除\(M\). \(|S|\in [1,10]\),\( ...

  3. web流行工具

    中小型公司: Node.js:现代工业化前端的基础: RequireJS:AMD规范, 即将过时的 JavaScript 模块化方案: Bower:前端模块源: npm:前端工具源,另一个潜在的前端模 ...

  4. CSS——◇demo

    核心思想:嵌套盒子中的◇超过父盒子的部分隐藏. 第一种写法: <!DOCTYPE html> <html> <head> <meta charset=&quo ...

  5. oracle 用户的操作

    语法: CREATE USER user   IDENTIFIED { BY password              | EXTERNALLY [ AS 'certificate_DN' ]    ...

  6. Ubuntu 关闭guest用户

    Ubuntu 关闭guest用户 ca0gu0@ub:~$ cat /etc/lightdm/lightdm.conf [SeatDefaults]autologin-user=falseallow- ...

  7. PAT-day1

    1001 害死人不偿命的(3n+1)猜想 (15 分)   卡拉兹(Callatz)猜想: 对任何一个正整数 n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把 ( 3n+1)砍掉一半.这样一直 ...

  8. 环形缓冲区: ringbuf.c

    #cat aa.c /*ringbuf .c*/ #include<stdio.h> #include<ctype.h> #define NMAX 8 int iput = 0 ...

  9. Luogu P1892 [BOI2003]团伙

    P1892 [BOI2003]团伙 题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人 ...

  10. isinstance、issubclass、反射

    一.isinstance.issubclass # isinstance(obj, cls) 检查obj是否是cls的对象 class A(object):pass a = A() print(isi ...