Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

解题思路:

首先,确定一下什么样的数字中没有不吉利数字。

1.这个数字的前缀不是不吉利数字(废话)

2.这个数字中间不包含不吉利数字(废话)

3.这个数字的后缀不是不吉利数字(废话)

那么,这个数字如果是像汉堡那样一层一层堆的话,我们可以通过尽可能阻止不吉利数字出现来完成任务。

假设数字串出现到了第 i 位,只要后缀m-1位不是不吉利数字m-1位就可以。

所以设f[i][j]为数字堆积到 i 而匹配出来了 j 位。

那么 :

a[k][j]为预处理出来的结果,其概念为:

原串中匹配到 j 时 k 位是否可以被枚举,由于做到不重不漏地计数,每次取前一个next即可

最后由于运算简单但递推长度大,使用矩阵乘法即可。

代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long lnt;
int n,m;
lnt K;
char num[];
int nxt[];
struct squ{
lnt s[][];
squ friend operator * (squ x,squ y)
{
squ ans;
for(int i=;i<m;i++)
{
for(int j=;j<m;j++)
{
ans.s[i][j]=;
for(int k=;k<m;k++)
{
ans.s[i][j]=(ans.s[i][j]+x.s[i][k]*y.s[k][j])%K;
}
}
}
return ans;
}
squ friend operator ^ (squ x,lnt y)
{
squ ans=x;
y--;
while(y)
{
if(y&)
ans=ans*x;
x=x*x;
y=y/;
}
return ans;
}
}f,g;
int main()
{
scanf("%d%d%lld",&n,&m,&K);
scanf("%s",num+);
nxt[]=nxt[]=;
for(int i=,j=;i<=m;i++)
{
while(j&&num[i]!=num[j+])
j=nxt[j];
if(num[i]==num[j+])
j++;
nxt[i]=j;
}
for(int k=;k<m;k++)
{
for(int j=;j<;j++)
{
int i=k;
while(i&&num[i+]!=j+'')
i=nxt[i];
if(num[i+]==j+'')
i++;
if(i!=m)
g.s[i][k]=(g.s[i][k]+)%K;
}
}
f=g^n;
lnt ans=;
for(int i=;i<m;i++)
{
ans=(ans+f.s[i][])%K;
}
printf("%lld\n",ans);
return ;
}

BZOJ1009: [HNOI2008]GT考试(KMP+矩阵乘法)的更多相关文章

  1. [bzoj1009][HNOI2008]GT考试——KMP+矩阵乘法

    Brief Description 给定一个长度为m的禁止字符串,求出长度为n的字符串的个数,满足: 这个字符串的任何一个字串都不等于给定字符串. 本题是POJ3691的弱化版本. Algorithm ...

  2. [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)

    Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...

  3. BZOJ 1009 [HNOI2008]GT考试 (KMP+矩阵乘法)

    ---恢复内容开始--- 题目大意:给定一个由数字构成的字符串A(len<=20),让你选择一个长度为n(n是给定的)字符串X,一个合法的字符串X被定义为,字符串X中不存在任何一段子串与A完全相 ...

  4. bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...

  5. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  6. BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法

    BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考 ...

  7. BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Statu ...

  8. bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...

  9. 题解:BZOJ 1009 HNOI2008 GT考试 KMP + 矩阵

    原题描述: 阿申准备报名参加GT考试,准考证号为N位数 X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai&a ...

随机推荐

  1. 动态限制EdiText仅仅能输入特定字符

    怎样设置EditText,使得仅仅能输入数字或者某些字母呢? 一.设置EditText,仅仅输入数字: 方法1:直接生成DigitsKeyListener对象就能够了. et_1.setKeyList ...

  2. Struts2 全局结果集

    1.index,jsp <body> Result类型 <ol> <li><a href="user/user?type=1">返回 ...

  3. javaScript for in循环遍历对象

    for循环常被我们用来遍历数组,而如何遍历对象呢? 这时就需要用到for in循环了 写一个遍历对象名简写如下: for(var xxx in ooo){console.log(xxx)} 其中xxx ...

  4. 昼猫笔记 从此告别复杂代码--JavaScript

    昼猫笔记--给你带来不一样的笔记 不止是笔记 更多的是思考 大家好,我是一只来自喵星的前端初学者,由于我们喵星人科技较为落后,昼猫从今天开始带着使命来到地球学习前端知识. 从今天开始,猫猫我就从Jav ...

  5. USB摄像头驱动框架分析(五)

    一.USB摄像头驱动框架如下所示:1.构造一个usb_driver2.设置   probe:        2.1. 分配video_device:video_device_alloc        ...

  6. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  7. Activiti工作流(4):编写一个HelloWorld

    版权声明:本文为博主原创文章,未经博主允许不得转载. 1.使用eclipse的activiti插件画流程图 在resource文件夹下新建一个工作流diagram 右键——new——other...— ...

  8. visualvm监控tomcat

    https://my.oschina.net/weidedong/blog/787203

  9. qt qlineedit只输入数字

    lineEdit->setValidator(new QRegExpValidator(QRegExp("[0-9]+$")));

  10. 洛谷 P2558 [AHOI2002]网络传输

    P2558 [AHOI2002]网络传输 题目描述 在计算机网络中所有数据都是以二进制形式来传输的. 但是在进行较大数据的传输时,直接使用该数的二进制形式加以传输则往往传输的位数过多. 譬如要传输 1 ...