Learning to Read Chest X-Rays:Recurrent Neural Cascade Model for Automated Image Annotation (CVPR 2016)

Goals:

-Learn to read chest x-rays from an existing dataset of images and text with minimal human effort

-To generate text description about disease in image as well as their context (with pre-defined grammar, thus not multiple-instance-learning)

Approach

-Text-mining based image labeling;train CNN for image, RNN for text

-Extensive regularization (e.g.,batch-normalization, data dropout) to deal with data bias(normal vs. diseased)

-Joint image/text context vector for more composite image labeling

The above picture is an illustration of how joint image/text context vector is obtained. RNN's state vector (h) is initialized with the CNN image embedding (CNN(I)), and it's unrolled over the annotation sequences with the words as input. Mean-pooling is applied over the state vectors in each word of the sequence, to obtain the joint image/text vector. All RNNs share the same parameters, which are trained in the first round.

MDNet: A Semantically and Visually Interpretable Medical Image Diagnosis Network (CVPR 2017)

MDNet can read images, generate diagnostic reports, retrieve images by symptom descriptions, and visualize network attention.

TandemNet: Distilling Knowledge from Medical Images Using Diagnostic Reports as Optional Semantic References (MICCAI 2017)

Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation (NIPS 2018)

On the Automatic Generation of Medical Imaging Reports (ACL 2018)

Datasets: IU X-Ray , PEIR Gross

ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases (CVPR 2017) Xiaosong Wang

从标题就可以看到这篇论文和Medical  Image Report没啥关系, 为了便于继续学习后面的TieNet,还是将它放在这里。

TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays (CVPR 2018) Xiaosong Wang

Reading a chest X-ray image remains a challenging job for learning-oriented machine intelligence ,due to

(1).shortage of large-scale machine-learnable medical image datasets

(2).lack of techniques that can mimic the high-level reasoning of human radiologists that requires years of knowledge accumulation and professional training.

Contributions:

(1).proposed the Text-Image Embedding Network, which is a multi-purpose end-to-end trainable multi-task CNN-RNN framework

(2).show how raw report data, together with paired image, can be utilized to produce meaningful attention-based image and text representations using the proposed TieNet.

(3).outline how the developed text and image embeddings are able to boost the auto-annotation framework and achieve extremely high accuracy for chest x-ray labeling

(4).present a novel image classification framework which takes images as the sole input, but uses the paired text-image representations from training as a prior knowledge injection, in order to produce improved classification scores and preliminary report generations.

Datasets: ChestX-ray14, Hand-labeled, OpenI

The CNN component additionally includes a convolutional layer(transition layer) to manipulate the spatial grid size and feature dimension.

To obtain an interpretable global text and visual embedding for the purpose of classification, introduce two key enhancements in the form of the AETE and SW-GAP

AETE: Attention Encoded Text Embedding

SW-GAP: Saliecny Weighted Global Average Pooling

Knowledge-Driven Encode, Retrieve, Paraphrase for Medical Image Report Generation (AAAI 2019)
Christy Y. Li, Xiaodan Liang**, Zhiting Hu, Eric Xing.

End-to-End Knowledge-Routed Relational Dialogue System for Automatic Diagnosis (AAAI 2019)
Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang**, Jianheng Tang, Liang Lin.

Medical Image Report论文合辑的更多相关文章

  1. Image Caption论文合辑2

    说明: 这个合辑里面的论文不全是Image Caption, 但大多和Image Caption相关, 同时还有一些Workshop论文. Guiding Long-Short Term Memory ...

  2. Image Captioning 经典论文合辑

    Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...

  3. Image Paragraph论文合辑

    A Hierarchical Approach for Generating Descriptive Image Paragraphs (CPVR 2017) Li Fei-Fei. 数据集地址: h ...

  4. 【Tips】史上最全H1B问题合辑——保持H1B身份终级篇

    [Tips]史上最全H1B问题合辑——保持H1B身份终级篇 2015-04-10留学小助手留学小助手 留学小助手 微信号 liuxue_xiaozhushou 功能介绍 提供最真实全面的留学干货,帮您 ...

  5. SSH三大框架合辑的搭建步骤

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  6. 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...

  7. 【OpenCV新手教程之十八】OpenCV仿射变换 & SURF特征点描写叙述合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)  ...

  8. 【OpenCV新手教程之十七】OpenCV重映射 & SURF特征点检測合辑

    本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨)  ...

  9. [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...

随机推荐

  1. C++ 计算任意两个日期之间的天数

    C++写的一个计算两个日期之间天数的小程序: #include <Windows.h> #include <stdio.h> struct tagDate { int year ...

  2. Android 长按事件和短按事件同时响应

    在长按事件中的return false 改为return true就可以解决这个问题

  3. [Ramda] Convert a Promise.all Result to an Object with Ramda's zip and zipObj

    In this lesson, we'll use Promise.all to get an array that contains the resolved values from multipl ...

  4. [Angular] Create dynamic content with <tempalte>

    To create a dynamic template, we need to a entry component as a placeholder. Then we can use entry c ...

  5. Web开发四大作用域(转)

    Web开发中的四个域对象(范围由小到大): page(jsp有效)  request(一次请求) session(一次会话) application(当前web应用) page域指的是pageCont ...

  6. Erlang 学习笔记

    http://wenku.baidu.com/link?url=AUQR8Hn-e-fEB_lqjXsd8XfapWj1qAK7J05JoBXFib_LlSk5qSOTia8HIxNV1XkeZi-k ...

  7. HDU 5293 Train chain Problem - 树链剖分(树状数组) + 线段树+ 树型dp

    传送门 题目大意: 一颗n个点的树,给出m条链,第i条链的权值是\(w_i\),可以选择若干条不相交的链,求最大权值和. 题目分析: 树型dp: dp[u][0]表示不经过u节点,其子树的最优值,dp ...

  8. 80. Domino Internet Password

    Internet口令保存在Domino文件夹的个人文档的HTTPPassword域中,和文档中的username一起用于藉各种Internet协议訪问Dominoserver时的校验,最经常使用的就是 ...

  9. matlab 高级函数 —— circshift、squeeze

    circshift:顾名思义,循环移动,循环的意义在于,移出的数据不丢失,而是来到队列的首部位置,也即其实是将原始序列视为一种圆环. 1. 基本用法 默认为右移. Y = circshift(A,K) ...

  10. hadoop编程技巧(6)---处理大量的小型数据文件CombineFileInputFormat申请书

    代码测试环境:Hadoop2.4 应用场景:当需要处理非常多的小数据文件,这种技术的目的,可以被应用到实现高效的数据处理. 原理:申请书CombineFileInputFormat,能够进行切片合并的 ...