Learning to Read Chest X-Rays:Recurrent Neural Cascade Model for Automated Image Annotation (CVPR 2016)

Goals:

-Learn to read chest x-rays from an existing dataset of images and text with minimal human effort

-To generate text description about disease in image as well as their context (with pre-defined grammar, thus not multiple-instance-learning)

Approach

-Text-mining based image labeling;train CNN for image, RNN for text

-Extensive regularization (e.g.,batch-normalization, data dropout) to deal with data bias(normal vs. diseased)

-Joint image/text context vector for more composite image labeling

The above picture is an illustration of how joint image/text context vector is obtained. RNN's state vector (h) is initialized with the CNN image embedding (CNN(I)), and it's unrolled over the annotation sequences with the words as input. Mean-pooling is applied over the state vectors in each word of the sequence, to obtain the joint image/text vector. All RNNs share the same parameters, which are trained in the first round.

MDNet: A Semantically and Visually Interpretable Medical Image Diagnosis Network (CVPR 2017)

MDNet can read images, generate diagnostic reports, retrieve images by symptom descriptions, and visualize network attention.

TandemNet: Distilling Knowledge from Medical Images Using Diagnostic Reports as Optional Semantic References (MICCAI 2017)

Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation (NIPS 2018)

On the Automatic Generation of Medical Imaging Reports (ACL 2018)

Datasets: IU X-Ray , PEIR Gross

ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases (CVPR 2017) Xiaosong Wang

从标题就可以看到这篇论文和Medical  Image Report没啥关系, 为了便于继续学习后面的TieNet,还是将它放在这里。

TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays (CVPR 2018) Xiaosong Wang

Reading a chest X-ray image remains a challenging job for learning-oriented machine intelligence ,due to

(1).shortage of large-scale machine-learnable medical image datasets

(2).lack of techniques that can mimic the high-level reasoning of human radiologists that requires years of knowledge accumulation and professional training.

Contributions:

(1).proposed the Text-Image Embedding Network, which is a multi-purpose end-to-end trainable multi-task CNN-RNN framework

(2).show how raw report data, together with paired image, can be utilized to produce meaningful attention-based image and text representations using the proposed TieNet.

(3).outline how the developed text and image embeddings are able to boost the auto-annotation framework and achieve extremely high accuracy for chest x-ray labeling

(4).present a novel image classification framework which takes images as the sole input, but uses the paired text-image representations from training as a prior knowledge injection, in order to produce improved classification scores and preliminary report generations.

Datasets: ChestX-ray14, Hand-labeled, OpenI

The CNN component additionally includes a convolutional layer(transition layer) to manipulate the spatial grid size and feature dimension.

To obtain an interpretable global text and visual embedding for the purpose of classification, introduce two key enhancements in the form of the AETE and SW-GAP

AETE: Attention Encoded Text Embedding

SW-GAP: Saliecny Weighted Global Average Pooling

Knowledge-Driven Encode, Retrieve, Paraphrase for Medical Image Report Generation (AAAI 2019)
Christy Y. Li, Xiaodan Liang**, Zhiting Hu, Eric Xing.

End-to-End Knowledge-Routed Relational Dialogue System for Automatic Diagnosis (AAAI 2019)
Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang**, Jianheng Tang, Liang Lin.

Medical Image Report论文合辑的更多相关文章

  1. Image Caption论文合辑2

    说明: 这个合辑里面的论文不全是Image Caption, 但大多和Image Caption相关, 同时还有一些Workshop论文. Guiding Long-Short Term Memory ...

  2. Image Captioning 经典论文合辑

    Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...

  3. Image Paragraph论文合辑

    A Hierarchical Approach for Generating Descriptive Image Paragraphs (CPVR 2017) Li Fei-Fei. 数据集地址: h ...

  4. 【Tips】史上最全H1B问题合辑——保持H1B身份终级篇

    [Tips]史上最全H1B问题合辑——保持H1B身份终级篇 2015-04-10留学小助手留学小助手 留学小助手 微信号 liuxue_xiaozhushou 功能介绍 提供最真实全面的留学干货,帮您 ...

  5. SSH三大框架合辑的搭建步骤

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  6. 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...

  7. 【OpenCV新手教程之十八】OpenCV仿射变换 & SURF特征点描写叙述合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)  ...

  8. 【OpenCV新手教程之十七】OpenCV重映射 & SURF特征点检測合辑

    本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨)  ...

  9. [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...

随机推荐

  1. Java 常用工具类---- 各种字符集编码判断与转换

    import java.io.UnsupportedEncodingException; /** * 判断字符编码 * * @author guyinyihun */ public class Cha ...

  2. [React Router v4] Redirect to Another Page

    Overriding a browser's current location without breaking the back button or causing an infinite redi ...

  3. thinkphp5多级控制器是什么?怎么使用?

    thinkphp5多级控制器是什么?怎么使用? 一.总结 1.多级控制器是让控制器的级数变成多级,也就是controller目录下可以新建其它目录. 2.使用的话注意目录下的控制的的命名空间(加上目录 ...

  4. [NPM] Make npm scripts cross-environment friendly

    Unfortunately not all shell commands work across various environments. Two main techniques to suppor ...

  5. Python爬虫突破封禁的6种常见方法

    转 Python爬虫突破封禁的6种常见方法 2016年08月17日 22:36:59 阅读数:37936 在互联网上进行自动数据采集(抓取)这件事和互联网存在的时间差不多一样长.今天大众好像更倾向于用 ...

  6. AJAX代码格式

    var request; //XMLHttpRequest的创建 function createRequest(url){ if(window.XMLHttpRequest){ request = n ...

  7. 要求两个异步任务都完成后, 才能回到主线程:dispatch_group_t

    需求:两个异步任务都完成后, 回到主线程 /** 1.下载图片1和图片2 2.将图片1和图片2合并成一张图片后显示到imageView上 思考: * 下载图片 : 子线程 * 等2张图片都下载完毕后, ...

  8. 通过手机其他iOS应用打开此文件

    根据所处理文档的格式,提供本地设备(InApp)能处理该格式文档的所有应用(App).比如,demo中所处理的是pdf格式的文档,那么可以打开该文档的本地app有邮件.打印等等.仅支持ARC. dem ...

  9. 2015-07-30Java 错题

    2 推断对错.在java的多态调用中,new的是哪一个类就是调用的哪个类的方法. 正确答案: A 对 错 解析: java多态有两种情况:重载和覆写 在覆写中.运用的是动态单分配.是依据new的类型确 ...

  10. Windows消息:WM_USER与WM_APP的区别

    Windows消息范围及意义 #define WM_USER 0x0400 #define WM_APP 0x8000 0到WM_USER-1 Messages reserved for use by ...