Medical Image Report论文合辑
Learning to Read Chest X-Rays:Recurrent Neural Cascade Model for Automated Image Annotation (CVPR 2016)
Goals:
-Learn to read chest x-rays from an existing dataset of images and text with minimal human effort
-To generate text description about disease in image as well as their context (with pre-defined grammar, thus not multiple-instance-learning)
Approach
-Text-mining based image labeling;train CNN for image, RNN for text
-Extensive regularization (e.g.,batch-normalization, data dropout) to deal with data bias(normal vs. diseased)
-Joint image/text context vector for more composite image labeling


The above picture is an illustration of how joint image/text context vector is obtained. RNN's state vector (h) is initialized with the CNN image embedding (CNN(I)), and it's unrolled over the annotation sequences with the words as input. Mean-pooling is applied over the state vectors in each word of the sequence, to obtain the joint image/text vector. All RNNs share the same parameters, which are trained in the first round.
MDNet: A Semantically and Visually Interpretable Medical Image Diagnosis Network (CVPR 2017)
MDNet can read images, generate diagnostic reports, retrieve images by symptom descriptions, and visualize network attention.
TandemNet: Distilling Knowledge from Medical Images Using Diagnostic Reports as Optional Semantic References (MICCAI 2017)
Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation (NIPS 2018)
On the Automatic Generation of Medical Imaging Reports (ACL 2018)

Datasets: IU X-Ray , PEIR Gross
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases (CVPR 2017) Xiaosong Wang
从标题就可以看到这篇论文和Medical Image Report没啥关系, 为了便于继续学习后面的TieNet,还是将它放在这里。
TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays (CVPR 2018) Xiaosong Wang
Reading a chest X-ray image remains a challenging job for learning-oriented machine intelligence ,due to
(1).shortage of large-scale machine-learnable medical image datasets
(2).lack of techniques that can mimic the high-level reasoning of human radiologists that requires years of knowledge accumulation and professional training.
Contributions:
(1).proposed the Text-Image Embedding Network, which is a multi-purpose end-to-end trainable multi-task CNN-RNN framework
(2).show how raw report data, together with paired image, can be utilized to produce meaningful attention-based image and text representations using the proposed TieNet.
(3).outline how the developed text and image embeddings are able to boost the auto-annotation framework and achieve extremely high accuracy for chest x-ray labeling
(4).present a novel image classification framework which takes images as the sole input, but uses the paired text-image representations from training as a prior knowledge injection, in order to produce improved classification scores and preliminary report generations.
Datasets: ChestX-ray14, Hand-labeled, OpenI

The CNN component additionally includes a convolutional layer(transition layer) to manipulate the spatial grid size and feature dimension.

To obtain an interpretable global text and visual embedding for the purpose of classification, introduce two key enhancements in the form of the AETE and SW-GAP
AETE: Attention Encoded Text Embedding
SW-GAP: Saliecny Weighted Global Average Pooling
Knowledge-Driven Encode, Retrieve, Paraphrase for Medical Image Report Generation (AAAI 2019)
Christy Y. Li, Xiaodan Liang**, Zhiting Hu, Eric Xing.
End-to-End Knowledge-Routed Relational Dialogue System for Automatic Diagnosis (AAAI 2019)
Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang**, Jianheng Tang, Liang Lin.
Medical Image Report论文合辑的更多相关文章
- Image Caption论文合辑2
说明: 这个合辑里面的论文不全是Image Caption, 但大多和Image Caption相关, 同时还有一些Workshop论文. Guiding Long-Short Term Memory ...
- Image Captioning 经典论文合辑
Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...
- Image Paragraph论文合辑
A Hierarchical Approach for Generating Descriptive Image Paragraphs (CPVR 2017) Li Fei-Fei. 数据集地址: h ...
- 【Tips】史上最全H1B问题合辑——保持H1B身份终级篇
[Tips]史上最全H1B问题合辑——保持H1B身份终级篇 2015-04-10留学小助手留学小助手 留学小助手 微信号 liuxue_xiaozhushou 功能介绍 提供最真实全面的留学干货,帮您 ...
- SSH三大框架合辑的搭建步骤
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...
- 【OpenCV新手教程之十八】OpenCV仿射变换 & SURF特征点描写叙述合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨) ...
- 【OpenCV新手教程之十七】OpenCV重映射 & SURF特征点检測合辑
本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨) ...
- [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...
随机推荐
- 【u229】独木桥
Time Limit: 1 second Memory Limit: 64 MB [问题描述] 战争已经进入到紧要时间.你是运输小队长,正在率领运输部队向前线运送物资.运输任务像做题一样的无聊.你希望 ...
- System.ArgumentException: 已添加了具有相同键的项。(An item with the same key has already been added) 在 System.Collections.Generic.Dictionary`2.Insert(TKey key, TValue value, Boolean add) 在 System.Web.Mvc.Js
最近将一个项目从ASP.NET MVC 3升级至刚刚发布的ASP.NET MVC 5.1,升级后发现一个ajax请求出现了500错误,日志中记录的详细异常信息如下: System.ArgumentEx ...
- Eclipse离线单独安装hibernate tools成功率低
原因:单独下载的hibernate tools插件应该缺少部分需要的组件,安装时,边联网,成功率很低 解决方法:下载jboss tools的全插件包,安装时,只选择hibernate tools插件可 ...
- 社会化登录分享-Android SDK的二次封装和使用
本系列文章将第三方的登录分享功能进行二次封装,统一接口调用,简化了接不同平台登录分享的步骤. 0 系列文章 系列一 Android SDK的二次封装和使用 系列二 源码解析 系列三 微信SDK接入 系 ...
- JQuery:cookie插件
JQuery居然没有操作cookie相关的函数,搜了下官方有个cookie的插件. 简单使用方法: <head> <title>JQuery-Cookie插件</titl ...
- 选择性编译代码:如 #ifdef __IPHONE_7_0
选择性编译代码: 选择性编译代码和选择性运行代码是不一样的,区别在于: 1.选择性编译代码是在硬件或者系统不支持的情况下不会对该段代码进行编译,也就不会由于不兼容的问题导致报错 #import < ...
- Dropout 理论基础与实战细节
Dropout: A Simple Way to Prevent Neural Networks from Overfitting 对于 dropout 层,在训练时节点保留率(keep probab ...
- 【18.40%】【codeforces 631D】Messenger
time limit per test 2 seconds memory limit per test 512 megabytes input standard input output standa ...
- webpack之font-awesome
1.安装font-awesome和font-awesome-loader及依赖 git:https://github.com/shakacode/font-awesome-loader npm ins ...
- MFC和Qt优缺点 (MFC几乎没有优点、全面下风)
在网上看到的,拿来和大家一起讨论下. 我曾经使用过来开发过软件,我想和大家分享我使用他们时所体会的不同之处. 我并非一个职业作家,这篇文章可能看起来不如专业的杂志和网站上的那么条理清晰.但是,我在这里 ...