bzoj1801: [Ahoi2009]chess 中国象棋(DP)
1801: [Ahoi2009]chess 中国象棋
题目:传送门
题解:
表示自己的DP菜的抠脚
%题解...
定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 (对于任意的一行或者一列,棋子数都不会超过2)
那么以下的转移其实就很容易YY了:
对于当前的第i行,一共分为6种情况:
1、啥玩意儿都不填 f[i][j][k]=(f[i][j][k]+f[i-1][j-1][k]*(m-j+1-k))%mod;
2、只填一个棋子,并且填在当前没有棋子的一列 f[i][j][k]=(f[i][j][k]+f[i-1][j-1][k]*(m-j+1-k))%mod;
因为对于上一个状态来说,只有一个棋子的就多了一列啊
3、只填一个棋子,并且填在当前仅有一个棋子的一列 f[i][j][k]=(f[i][j][k]+f[i-1][j+1][k-1]*(j+1))%mod;
很明显两个棋子的列数多了一,且一个棋子的列数少了一
以下三种和前面的都一样,就不解释了:
4、填两个棋子,并且都填在当前没有棋子的列上 f[i][j][k]=(f[i][j][k]+f[i-1][j-2][k]*calc(m-j+2-k))%mod;
5、填两个棋子,一个填在有一个棋子的列上,一个填在没有棋子的列上 f[i][j][k]=(f[i][j][k]+f[i-1][j][k-1]*j*(m-j-k+1))%mod;
6、填两个棋子,都填在有一个棋子的列上 f[i][j][k]=(f[i][j][k]+f[i-1][j+2][k-2]*calc(j+2))%mod;
PS:calc(int x){return x*(x-1)/2;}
代码:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define qread(x) x=read()
using namespace std;
typedef long long LL;
const LL mod=;
inline int read()
{
int f=,x=;char ch;
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
int n,m;
LL f[][][];//f[i][j][k] 表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数
LL calc(int x){return x*(x-)/;}
int main()
{
qread(n);qread(m);
memset(f,,sizeof(f));
f[][][]=1LL;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=;k<=m-j;k++)
{
f[i][j][k]=f[i-][j][k];
if(j>)f[i][j][k]=(f[i][j][k]+f[i-][j-][k]*(m-j+-k))%mod;
if(k>)f[i][j][k]=(f[i][j][k]+f[i-][j+][k-]*(j+))%mod;
if(j>)f[i][j][k]=(f[i][j][k]+f[i-][j-][k]*calc(m-j+-k))%mod;
if(j> && k>)f[i][j][k]=(f[i][j][k]+f[i-][j][k-]*j*(m-j-k+))%mod;
if(k>)f[i][j][k]=(f[i][j][k]+f[i-][j+][k-]*calc(j+))%mod;
}
LL ans=;
for(int j=;j<=m;j++)
for(int k=;k<=m-j;k++)
ans=(ans+f[n][j][k])%mod;
printf("%lld\n",ans);
return ;
}
感觉很毒瘤。。。
bzoj1801: [Ahoi2009]chess 中国象棋(DP)的更多相关文章
- bzoj1801: [Ahoi2009]chess 中国象棋 dp
题意:在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 题解:dp[i][j][k]表示到了第i行,有j列 ...
- BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*
BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...
- 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP
[BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...
- BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)
题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...
- BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )
dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...
- [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】
题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...
- BZOJ1801 [Ahoi2009]chess 中国象棋 【dp】
题目 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 输入格式 一行包含两个整数N,M,中间用空格分开. ...
- BZOJ1801 [Ahoi2009]chess 中国象棋 动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1801 题意概括 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请 ...
- BZOJ1801:[Ahoi2009]chess 中国象棋
Time Limit: 10 Sec Memory Limit: 64 MB Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置 ...
随机推荐
- open函数详解
转载:https://www.cnblogs.com/frank-yxs/p/5925574.html open函数用来在进程中打开文件,如果成功则返回一个文件描述符fd. ============= ...
- POJ 3270
黑书上的经典题了.我说说解这个题的巧妙的地方吧. 首先,竟然和置换联系起来了.因为其实一个交换即至少可以使其中一个元素到达指定位置了.和循环置换联合起来,使得一个循环内的数可以一步到达指定位置,很巧妙 ...
- HDU 1232 - 并查集 解题报告
畅通project Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- Swift 3.0(一)
一:let 和 var let 声明的是一个常量, var 声明的是一个变量 二:简单数据类型 1.自推出数据类型 let implicitDouble = 70.0 //根据初始化时赋值的数据 ...
- java中的输入输出<1>
java中的输入输出基础(1) java中的IO支持通过java.io包下的类和接口来支持.在java.io包下主要包括输入.输出两种io流,每种输入.输出流又分为字节流和字符流. 字节流就是以字节为 ...
- JavaScript学习记录二
title: JavaScript学习记录二 toc: true date: 2018-09-13 10:14:53 --<JavaScript高级程序设计(第2版)>学习笔记 要多查阅M ...
- JavaScript学习记录一
title: JavaScript学习记录一 toc: true date: 2018-09-11 18:26:52 --<JavaScript高级程序设计(第2版)>学习笔记 要多查阅M ...
- 由ubuntu装好想到的
这篇不是技术文,有点唠叨的总结.不喜勿喷. 最近开始全面学ubuntu,一翻书回忆起本科没选但是去听了的Linux.当时看的还是楚广明的fedora教程,这多年过去综合很多人的说 法,fedora不稳 ...
- select标签下option标签里value属性有什么用以及和text的区别
转自:http://blog.csdn.net/summer_sy/article/details/54572398 1:value的用处 <select > <option val ...
- django steps EASY WAY
django 2.0 python 3.6 =========django steps EASY WAY=========== reference: https://djangoforbeginner ...