PAT_A1123#Is It a Complete AVL Tree
Source:
Description:
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print
YESif the tree is complete, orNOif not.
Sample Input 1:
5
88 70 61 63 65
Sample Output 1:
70 63 88 61 65
YES
Sample Input 2:
8
88 70 61 96 120 90 65 68
Sample Output 2:
88 65 96 61 70 90 120 68
NO
Keys:
- 二叉树的建立
- 二叉树的遍历
- 完全二叉树(Complete Binary Tree)
- 平衡二叉树(Self-balancing Binary Search Tree,AVL tree)
Attention:
- 判断完全二叉树,while的固定写法
- Rotation中,先Update root,再Update temp,否则会影响结果,注意
Code:
/*
Data: 2019-06-24 15:36:45
Problem: PAT_A1123#Is It a Complete AVL Tree
AC: 35:46 题目大意:
由插入序列构造一棵AVL树,输出层次遍历并判断是否为一棵完全二叉树 基本思路:
构造平衡二叉树,
中序遍历并判断是否为完全二叉树
*/
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
struct node
{
int data;
int height;
node *lchild, *rchild;
}; int GetHeight(node *root)
{
if(root == NULL)
return ;
else
return root->height;
} int GetBalanceFactor(node *root)
{
return GetHeight(root->lchild) - GetHeight(root->rchild);
} void UpdataHeight(node *&root)
{
root->height = max(GetHeight(root->lchild),GetHeight(root->rchild))+;
} void LeftRotation(node *&root)
{
node *temp = root->rchild;
root->rchild = temp->lchild;
temp->lchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} void RightRotation(node *&root)
{
node *temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} void Insert(node *&root, int x)
{
if(root == NULL)
{
root = new node;
root->data = x;
root->height=;
root->lchild = root->rchild = NULL;
}
else if(x < root->data)
{
Insert(root->lchild, x);
UpdataHeight(root);
if(GetBalanceFactor(root) == )
{
if(GetBalanceFactor(root->lchild) == )
RightRotation(root);
else
{
LeftRotation(root->lchild);
RightRotation(root);
}
}
}
else
{
Insert(root->rchild, x);
UpdataHeight(root);
if(GetBalanceFactor(root) == -)
{
if(GetBalanceFactor(root->rchild) == -)
LeftRotation(root);
else
{
RightRotation(root->rchild);
LeftRotation(root);
}
}
}
} int IsComplete(node *root, int n)
{
queue<node*> q;
q.push(root);
int cnt=, ans=;
while(!q.empty())
{
root = q.front();
q.pop();
if(root)
{
printf("%d%c", root->data,++cnt==n?'\n':' ');
q.push(root->lchild);
q.push(root->rchild);
}
else
{
if(cnt==n)
break;
else
{
ans=;
while(!q.empty())
{
root = q.front();
if(root) break;
else q.pop();
}
}
}
}
return ans;
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE int n,x;
node *root = NULL;
scanf("%d", &n);
for(int i=; i<n; i++)
{
scanf("%d", &x);
Insert(root, x);
}
if(IsComplete(root, n))
printf("YES");
else
printf("NO"); return ;
}
PAT_A1123#Is It a Complete AVL Tree的更多相关文章
- PAT甲级1123. Is It a Complete AVL Tree
PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...
- 1123 Is It a Complete AVL Tree
1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...
- 1123. Is It a Complete AVL Tree (30)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- A1123. Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- 1123 Is It a Complete AVL Tree(30 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- PAT 1123 Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级——A1123 Is It a Complete AVL Tree【30】
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
随机推荐
- Spark 颠覆 MapReduce 保持的排序记录
在过去几年,Apache Spark的採用以惊人的速度添加着,通常被作为MapReduce后继,能够支撑数千节点规模的集群部署. 在内存中数 据处理上,Apache Spark比MapReduce更加 ...
- DirectX11 学习笔记6 - 使用D3DXMATH数学库的一个样例
这个样例是在之前的样例基础上 .把之前d3dx10math数学库换成了最新的d3dxmath.长处就不说了.先上效果图 所有代码.以及效果文件 文件结构 所有代码: 依照上图的文件顺序 #pragma ...
- 关于strace的一点东西
好久没写博客了,感觉有点羞愧,认为自己也应该静下心来利用自己可分配的时间去提升自己. 尽管近期在看一些Python的东西,但是认为自己还是不能忘记本行啊,Linux C的一些东西必须一直 ...
- 从零開始学Xamarin.Forms(二) 环境搭建、创建项目
一.环境搭建 Windows下环境搭建: 1.下载并安装jdk.Android SDK和NDK.当然还须要 VS2013 update 2(VS2010.VS2012均可)以上. a. 最新 ...
- Android和H5交互-基础篇
hybrid App开发也不是什么新鲜事了,其中native和h5之间的交互则是必不可少的.Android中是如何和H5交互的? 1.webView加载页面 我们都知道在Android中是通过webV ...
- CodeForces - 810C(规律)
C. Do you want a date? time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- iOS开发之KVC全解
一 KVC的基本概念 1.KVC是Key Value Coding的缩写,意思是键值编码. 在iOS中,提供了一种方法通过使用属性的名称(也就是Key)来间接访问对象属性的方法,这个方法可以不通过g ...
- .sh文件 编写格式
http://blog.sina.com.cn/s/blog_54f82cc201010hfz.html 介绍: 1 开头 程序必须以下面的行开始(必须方在文件的第一行): #!/bin/sh 符号# ...
- 引入外部CSS的两种方式及区别
1.CSS的两种引入方式 通过@import指令引入 @import指令是CSS语言的一部分,使用时把这个指令添加到HTML的一个<style>标签中: 要与外部的CSS文件关联起来,得使 ...
- C++中const用法
1.const和指针: 如果const出现在星号左边,表示被指物是常量:如果出现在星号右边,表示指针自身是常量:如果出现在星号两边,表示被指物和指针两者都是常量. char greet[] = “He ...



