PAT_A1123#Is It a Complete AVL Tree
Source:
Description:
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print
YES
if the tree is complete, orNO
if not.
Sample Input 1:
5
88 70 61 63 65
Sample Output 1:
70 63 88 61 65
YES
Sample Input 2:
8
88 70 61 96 120 90 65 68
Sample Output 2:
88 65 96 61 70 90 120 68
NO
Keys:
- 二叉树的建立
- 二叉树的遍历
- 完全二叉树(Complete Binary Tree)
- 平衡二叉树(Self-balancing Binary Search Tree,AVL tree)
Attention:
- 判断完全二叉树,while的固定写法
- Rotation中,先Update root,再Update temp,否则会影响结果,注意
Code:
/*
Data: 2019-06-24 15:36:45
Problem: PAT_A1123#Is It a Complete AVL Tree
AC: 35:46 题目大意:
由插入序列构造一棵AVL树,输出层次遍历并判断是否为一棵完全二叉树 基本思路:
构造平衡二叉树,
中序遍历并判断是否为完全二叉树
*/
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
struct node
{
int data;
int height;
node *lchild, *rchild;
}; int GetHeight(node *root)
{
if(root == NULL)
return ;
else
return root->height;
} int GetBalanceFactor(node *root)
{
return GetHeight(root->lchild) - GetHeight(root->rchild);
} void UpdataHeight(node *&root)
{
root->height = max(GetHeight(root->lchild),GetHeight(root->rchild))+;
} void LeftRotation(node *&root)
{
node *temp = root->rchild;
root->rchild = temp->lchild;
temp->lchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} void RightRotation(node *&root)
{
node *temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} void Insert(node *&root, int x)
{
if(root == NULL)
{
root = new node;
root->data = x;
root->height=;
root->lchild = root->rchild = NULL;
}
else if(x < root->data)
{
Insert(root->lchild, x);
UpdataHeight(root);
if(GetBalanceFactor(root) == )
{
if(GetBalanceFactor(root->lchild) == )
RightRotation(root);
else
{
LeftRotation(root->lchild);
RightRotation(root);
}
}
}
else
{
Insert(root->rchild, x);
UpdataHeight(root);
if(GetBalanceFactor(root) == -)
{
if(GetBalanceFactor(root->rchild) == -)
LeftRotation(root);
else
{
RightRotation(root->rchild);
LeftRotation(root);
}
}
}
} int IsComplete(node *root, int n)
{
queue<node*> q;
q.push(root);
int cnt=, ans=;
while(!q.empty())
{
root = q.front();
q.pop();
if(root)
{
printf("%d%c", root->data,++cnt==n?'\n':' ');
q.push(root->lchild);
q.push(root->rchild);
}
else
{
if(cnt==n)
break;
else
{
ans=;
while(!q.empty())
{
root = q.front();
if(root) break;
else q.pop();
}
}
}
}
return ans;
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE int n,x;
node *root = NULL;
scanf("%d", &n);
for(int i=; i<n; i++)
{
scanf("%d", &x);
Insert(root, x);
}
if(IsComplete(root, n))
printf("YES");
else
printf("NO"); return ;
}
PAT_A1123#Is It a Complete AVL Tree的更多相关文章
- PAT甲级1123. Is It a Complete AVL Tree
PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...
- 1123 Is It a Complete AVL Tree
1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...
- 1123. Is It a Complete AVL Tree (30)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- A1123. Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- 1123 Is It a Complete AVL Tree(30 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- PAT 1123 Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级——A1123 Is It a Complete AVL Tree【30】
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
随机推荐
- Git 项目上传至github入门实战并解决常见错误
1.Git GUI 首先,在push到github的项目必须先建立版本(即creat repository的名字一样),一般是先pull下来,再push(为了防止有其他人提交了代码,而你却不知道,造 ...
- 个人博客搭建----基于solo
个人站地址是:http://www.iwillhaveacatoneday.cn 博客是基于开源的Java 博客系统--solo搭建的,这里记录下部署过程中遇到的一些主要问题 后台 solo后台采的是 ...
- POJ 3653 & ZOJ 2935 & HDU 2722 Here We Go(relians) Again(最短路dijstra)
题目链接: PKU:http://poj.org/problem? id=3653 ZJU:problemId=1934" target="_blank">http ...
- pascal+sublime搭建Pascal学习环境
一.fpc安装 1. 下载:http://www.freepascal.org/down/i386/win32.var(或者:http://download.csdn.net/detail/wenph ...
- .m文件导入C++头文件带来的错误
这几天的工作挖了不少的坑.遇到了各种千奇百怪的错误,如今好好总结一下. 新建一个project,然后新建HelloCPP.h,HelloCPP.cpp文件.HelloCPP.h文件内容例如以下: #i ...
- C++第11周(春)项目3 - 点类派生直线类
课程首页在:http://blog.csdn.net/sxhelijian/article/details/11890759.内有完整教学方案及资源链接 [项目3 - 点类派生直线类]定义点类Poin ...
- 把一个文件夹下的多个excel文件合并到同一个excel的一个sheet里
#!/usr/bin/python # -*- coding: UTF-8 -*- import pandas as pd import os if __name__ == '__main__': F ...
- Java获取NTP网络时间
最近项目中涉及到一个时间验证的问题,需要根据当前时间来验证业务数据是否过期.所以直接写代码如下: new java.util.Date().getTime(); 结果测试的时候出现了 ...
- 有关于dict(字典)的特性与操作方法
有关于dict(字典)的特性与操作方法 1.字典的特性 语法: dic = {key1 : value1,key2 : value2,key3 : value3............} 注:字典中k ...
- android 提纲挈领
之后的android学习将侧重三方面: 1.基础内容例如xml属性.sharedpreference.数据库必须能够熟记于心. 2.开源library熟练应用,能够了解如何更好地使用各种开源libra ...