Python - Datacamp - Introduction to Matplotlib
Python - Datacamp - Introduction to Matplotlib
Datacamp: https://www.datacamp.com/
# 1.py 基本matplotlib.pyplot子模块入门 # Import the matplotlib.pyplot submodule and name it plt
import matplotlib.pyplot as plt # Create a Figure and an Axes with plt.subplots
fig, ax = plt.subplots() # Call the show function
plt.show()
# 2.py 添加数据 import matplotlib.pyplot as plt # 月份
MONTH = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
# 降雨量
rainfall = [44.10, 71.08, 93.36, 184.63, 286.79, 318.60, 238.22, 233.75, 194.35, 68.65, 38.40, 29.32] # 数据
data = {}
data['MONTH'] = MONTH
data['rainfall'] = rainfall # 创建数据以及轴
fig, ax = plt.subplots() # ax: (x, y)
ax.plot(data['MONTH'], data['rainfall']) # 显示
plt.show()
# 3.py 自定义显示 import matplotlib.pyplot as plt # 月份
MONTH = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
# 降雨量
rainfall = [44.10, 71.08, 93.36, 184.63, 286.79, 318.60, 238.22, 233.75, 194.35, 68.65, 38.40, 29.32] # 数据
data = {}
data['MONTH'] = MONTH
data['rainfall'] = rainfall # 创建数据以及轴
fig, ax = plt.subplots() # ax: (x, y)
ax.plot(data['MONTH'], data['rainfall'], color='b', marker='*', linestyle='--') # 显示
plt.show()
# 4.py 自定义标签以及抬头 import matplotlib.pyplot as plt # 月份
MONTH = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
# 降雨量
rainfall = [44.10, 71.08, 93.36, 184.63, 286.79, 318.60, 238.22, 233.75, 194.35, 68.65, 38.40, 29.32] # 数据
data = {}
data['MONTH'] = MONTH
data['rainfall'] = rainfall # 创建数据以及轴
fig, ax = plt.subplots() # ax: (x, y)
ax.plot(data['MONTH'], data['rainfall'], color='b', marker='*', linestyle='--') # 标签
ax.set_xlabel('Months')
ax.set_ylabel('Rainfall in CAN') # 标题
ax.set_title('Weather in CAN') # 显示
plt.show()
# 5.py 多重图表 import matplotlib.pyplot as plt # 月份
MONTH_F = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun']
MONTH_L = ['Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
# 降雨量
rainfall_canton_F = [44.10, 71.08, 93.36, 184.63, 286.79, 318.60]
rainfall_shanghai_F = [61.79, 59.40, 94.99, 83.19, 92.78, 173.57]
rainfall_canton_L = [238.22, 233.75, 194.35, 68.65, 38.40, 29.32]
rainfall_shanghai_L = [148.84, 193.88, 109.60, 62.44, 54.14, 37.71] # 创建数据以及轴
fig, ax = plt.subplots(2, 2) # ax: (x, y)
ax[0,0].plot(MONTH_F, rainfall_canton_F, color='b', marker='*', linestyle='--')
ax[0,1].plot(MONTH_F, rainfall_shanghai_F, color='r', marker='o', linestyle='--')
ax[1,0].plot(MONTH_L, rainfall_canton_L, color='b', marker='*', linestyle='--')
ax[1,1].plot(MONTH_L, rainfall_shanghai_L, color='r', marker='o', linestyle='--') # 标签
ax[0,0].set_xlabel('Months')
ax[0,0].set_ylabel('Rainfall in Canton')
ax[0,1].set_xlabel('Months')
ax[0,1].set_ylabel('Rainfall in Shanghai') # 标题
ax[0,0].set_title('Weather in Canton')
ax[0,1].set_title('Weather in Shanghai')
# 显示
plt.show()
# 6.py small multiples with shared y axis import matplotlib.pyplot as plt # 月份
MONTH = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
# 降雨量
rainfall = [44.10, 71.08, 93.36, 184.63, 286.79, 318.60, 238.22, 233.75, 194.35, 68.65, 38.40, 29.32]
# 温度
temperature = [10, 14, 20, 22, 19, 25, 30, 31, 32, 29, 15, 16] # 数据
data = {}
data['MONTH'] = MONTH
data['rainfall'] = rainfall
data['temperature'] = temperature # Create a figure and an array of axes: 2 rows, 1 column with shared y axis
fig, axes = plt.subplots(2, 1, sharey=True) axes[0].plot(data['MONTH'], data['rainfall'], color='b')
axes[0].plot(data['MONTH'], data['temperature'], color='b', linestyle='--') axes[1].plot(data['MONTH'], data['rainfall'], color='b')
axes[1].plot(data['MONTH'], data['temperature'], color='b', linestyle='--') plt.show()
Python - Datacamp - Introduction to Matplotlib的更多相关文章
- 学习笔记之Introduction to Data Visualization with Python | DataCamp
Introduction to Data Visualization with Python | DataCamp https://www.datacamp.com/courses/introduct ...
- 在python中使用图形库matplotlib
matplotlib is a python 2D plotting library which produces publication quality figures in a variety o ...
- [置顶] 如何在Windows 7 64位安装Python,并使用Matplotlib绘图
1. 安装Python 我使用的是Windows 7 64 bit,所以我从Python官网下载python-2.7.5.amd64.msi,安装步骤如下: 1) 安装windo ...
- Python数据可视化——使用Matplotlib创建散点图
Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...
- 【python笔记】使用matplotlib,pylab进行python绘图
一提到python绘图,matplotlib是不得不提的python最著名的绘图库,它里面包含了类似matlab的一整套绘图的API.因此,作为想要学习python绘图的童鞋们就得在自己的python ...
- Python的可视化包 – Matplotlib 2D图表(点图和线图,.柱状或饼状类型的图),3D图表(曲面图,散点图和柱状图)
Python的可视化包 – Matplotlib Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型地2D图表和一些基本的3D图表.Matplotlib最早是为了可 ...
- python安装matplotlib:python -m pip install matplotlib报错
matplotlib是python中强大的画图模块. 首先确保已经安装python,然后用pip来安装matplotlib模块. 进入到cmd窗口下,建议执行python -m pip install ...
- Python使用pip安装matplotlib模块
matplotlib是python中强大的画图模块. 首先确保已经安装python,然后用pip来安装matplotlib模块. 进入到cmd窗口下,建议执行python -m pip install ...
- 用Python的Pandas和Matplotlib绘制股票KDJ指标线
我最近出了一本书,<基于股票大数据分析的Python入门实战 视频教学版>,京东链接:https://item.jd.com/69241653952.html,在其中给出了MACD,KDJ ...
随机推荐
- [React] Forward a DOM reference to another Component using forwardRef in React 16.3
The function forwardRef allows us to extract a ref and pass it to its descendants. This is a powerfu ...
- tomcat下载及启动
http://tomcat.apache.org/ 打开网页,在左边选择版本,选择后网页往下面拉 拉下来,根据windows选择32还是64位的,其中zip是windows免安装版 下载后解压,然后配 ...
- ArcGIS教程:加权总和
摘要 通过将栅格各自乘以指定的权重并合计在一起来叠加多个栅格. 插图 插图中,像元值与其权重因子相乘.两者所得结果相加创建输出栅格.以左上角像元为例.两个输入的值变为 (2.2 * 0.75) = 1 ...
- SQL SERVER读书笔记:nolock
让查询语句不去申请共享锁,从而消除死锁,效果立竿见影. 缺点: 1.脏读 2.只能解决共享锁(S锁)参与的问题 3.需要修改语句本身才能使用
- oc7--内存分析
// // main.m // 第二个OC类 #import <Foundation/Foundation.h> @interface Person : NSObject { @publi ...
- ubuntu查看文件大小
使用linux命令df 和du,df 但是df只能查看一级文件夹大小.使用比例.档案系统及其挂入点,但对文件却无能为力.du可以查看文件及文件夹的大小.所以基本上是两者配合使用. 一 df h参数, ...
- javaBean为什么要implements Serializable
转自:https://www.cnblogs.com/jqlbj/p/6261592.html 一个对象序列化的接口,一个类只有实现了Serializable接口,它的对象才是可序列化的.因此如果要序 ...
- 【转】In ASP.NET using jQuery Uploadify upload attachment
Upload Uploadify is a JQuery plug-in, achieve the effect is very good, with progress display. Upload ...
- 认识React框架
在大厂面试的时候被问会不会React框架几乎是必须的,可见React框架在现在前端市场的份额.所以说学习React框架的必要性. react框架起源于Facebook的内部项目,因为对市场上的Java ...
- 【算法】Quick Select
针对问题 找到一对无序的数中第 K 大,或者第 K 小的元素,返回该元素的值或者它的 index(index 的情况比较适合这堆数每个都独一无二的情况,不然可能会有多个答案). 关键思想 拿一个数 ...