LeetCode 287. Find the Duplicate Number

暴力解法

时间 O(nlog(n)),空间O(n),按题目中Note“只用O(1)的空间”,照理是过不了的,但是可能判题并没有卡空间复杂度,所以也能AC。

class Solution:
# 基本思路为,将第一次出现的数字
def findDuplicate(self, nums: List[int]) -> int:
s = set()
for i in nums:
a = i in s
if a == True:
return i
else:
s.add(i)

双指针判断环

时间O(n),空间O(1),思路十分巧妙,但是使用条件比较苛刻。根据题目给出的条件,恰好能用这种解法,这应该也是出题人推荐的解法。

题意分析:

  1. 输入的序列有n+1个数字,每个数字在1~n之间取,这为构成数字环创造了条件。
  2. 只有一个数字有重复,所以只可能构成一个环。

注:上面所说的环是指1->2->3->1

以样例1为例:[1,3,4,2,2]

0 1 2 3 4
1 3 4 2 2

如下图所示,其中2->4->2构成环,入环点为2

解题思路

由题意分析可知,每个样例都可以画成这样一张图,我们只需要找出图中的环,并找出入环点,即为所求的重复数字key,下面都用key表示所求的重复数字。

为什么必定存在环

以样例1为例,图中出现了5个点0-4,图中存在5根指针线,5个点5根线,必定存在环。

n个点,点的范围去0~n-1,n根线,必定存在环。(n-1根线是恰好无环的情况,自己画图可知)

找环的方法

设置一个慢指针slow,一个快指针fast。slow每次走一步,fast每次走两步,如果slow与fast能相遇,说明图中存在环,并且相遇点一定存在于环中。

为什么key一定为入环点?

有题意分析中的表可知,key的入度一定大于1,即不止一个点可以直接到key。而key一定存在于环中,所以key一定为入环点。样例1中3,4都可到达2,2的入度2,2为入环点,即为所求的key。

怎么找入环点key?

slow和fast相交的点记为相遇点P。

slow和fast从起点0到相遇点P运行步骤如下:

这个相遇点P与起点0到达入环点key的步数 差距为环L的整数倍,故设置slow2从起点0开始,每次走一步,slow从相遇点P开始,每次走一步,slow和slow2一定会相遇在入环点key。

我们可以有一个小小的证明,如下图

设起点0到达入环点key的步数为x,相遇点P到达入环点key的步数为y。

设slow指针走到相遇点P的步数为t,fast走到相遇点P的步数为2*t。

设走完环一圈的步数为L

2 * t - x + y = M * L(一)

t - x + y = N * L (二)

fast指针在环中走的步数2t-x,此时到达相遇点P,key->P->key步数为2t-x+y = M * L,正好为L的M倍,M为常数。(一)式

slow指针在环中走的步数t-x,此时到达相遇点P,key->P->key步数为t-x+y = N * L,正好为L的N倍,N为常数。(二)式

2倍(二)式 减 (一)式

y-x = (2N-M) * L

所以y与x的步数差距为L倍的环。

得证。

如何确定起点0一定会进入包含key的环?

假设存在不包含key的环,起点0在不包含key的环中绕圈。

0 a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6 b7

按题意不包含环,b[i]与b[j]一定不相等(i != j)

由于b1~b7从1开始,所以b[i]只能从a[j]中取(1<=i<=7,1<=j<=6)

从6个数字的集合a中取7个数字,所以假设不成立,必定存在相同数字b[k],即为key。

代码如下

class Solution:
def findDuplicate(self, nums: List[int]) -> int:
# 如果只有两个元素,第一个元素一定是重复元素
if len(nums) == 2:
return nums[0] # fast每次走两步,slow每次走一步,起始点可以为任意位置
fast = 0
slow = 0
# python没有do while,所以在循环外写了一遍
slow = nums[slow]
fast = nums[nums[fast]]
while slow != fast:
slow = nums[slow]
fast = nums[nums[fast]] # fast从起点每次走一步,一定会与slow相遇,此时slow可能在环中走了多倍的L步。
# L为环一圈的步数
fast = 0
while fast != slow:
slow = nums[slow]
fast = nums[fast]
return fast

LeetCode 287. Find the Duplicate Number (python 判断环,时间复杂度O(n))的更多相关文章

  1. [LeetCode] 287. Find the Duplicate Number(Floyd判圈算法)

    传送门 Description Given an array nums containing n + 1 integers where each integer is between 1 and n  ...

  2. [LeetCode] 287. Find the Duplicate Number 寻找重复数

    Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), pro ...

  3. LeetCode 287. Find the Duplicate Number (找到重复的数字)

    Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), pro ...

  4. [LeetCode] 287. Find the Duplicate Number 解题思路

    Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), pro ...

  5. LeetCode : 287. Find the Duplicate Number

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAACRAAAAMMCAYAAAAhQhmZAAAMFGlDQ1BJQ0MgUHJvZmlsZQAASImVlw ...

  6. leetcode 217. Contains Duplicate 287. Find the Duplicate Number 442. Find All Duplicates in an Array 448. Find All Numbers Disappeared in an Array

    后面3个题都是限制在1-n的,所有可以不先排序,可以利用巧方法做.最后两个题几乎一模一样. 217. Contains Duplicate class Solution { public: bool ...

  7. 287. Find the Duplicate Number hard

    287. Find the Duplicate Number   hard http://www.cnblogs.com/grandyang/p/4843654.html 51. N-Queens h ...

  8. 【LeetCode】287. Find the Duplicate Number 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 保存已经访问过的数字 链表成环 二分查找 日期 题目 ...

  9. 【LeetCode】287. Find the Duplicate Number

    Difficulty:medium  More:[目录]LeetCode Java实现 Description Given an array nums containing n + 1 integer ...

随机推荐

  1. 用Python获取摄像头并实时控制人脸

    实现流程从摄像头获取视频流,并转换为一帧一帧的图像,然后将图像信息传递给opencv这个工具库处理,返回灰度图像(就像你使用本地静态图片一样) 程序启动后,根据监听器信息,使用一个while循环,不断 ...

  2. 【转载】关于DBUtils中QueryRunner的一些解读

    前面已经有文章说了DBUtils的一些特性, 这里再来详细说下QueryRunner的一些内部实现, 写的有错误的地方还恳请大家指出. QueryRunner类 QueryRunner中提供对sql语 ...

  3. 【转载】push to origin/master was rejected错误解决方案

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/a137151062/article/details/78820806idea中,发布项目到OSChi ...

  4. js 中this到底指向哪里?

    其实js的this指向很简单.我们记住下面3种情况. this 指向的是浏览器中的window.代码如下: function fn(){ this.name='yangkun'; this.age=2 ...

  5. 使用ajax爬取网站图片()

    以下内容转载自:https://www.makcyun.top/web_scraping_withpython4.html 文章关于网站使用Ajaxj技术加载页面数据,进行爬取讲的很详细 大致步骤如下 ...

  6. Git 基础教程 之 --no-ff模式合并

    ①  创建并切换dev分支 ②  修改readme.txt,并add,commit ③  切回master ④  合并 git merge --no-ff -m “merge with no-ff”d ...

  7. Codeforces 892C/D

    C. Pride 传送门:http://codeforces.com/contest/892/problem/C 本题是一个关于序列的数学问题——最大公约数(GCD). 对于一个长度为n的序列A={a ...

  8. CentOS 6.3(x86_32)下安装Oracle 10g R2

    一.硬件要求 1.内存 & swap Minimum: 1 GB of RAMRecommended: 2 GB of RAM or more 检查内存情况 # grep MemTotal / ...

  9. redis-事务-transaction

    redis的目标的是: 简洁,高效,由于事务本身就是一个很复杂的东西,所有我们不能把事务做的太复杂... multi,exec 127.0.0.1:6379> multi OK 127.0.0. ...

  10. POJ 3628 Bookshelf 2 题解

    本题解法非常多,由于给出的数据特殊性故此能够使用DFS和BFS,也能够使用01背包DP思想来解. 由于一般大家都使用DFS,这里使用非常少人使用的BFS.缺点是比DFS更加耗内存,只是长处是速度比DF ...