[JLOI2015]装备购买

题目描述

脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ,a_j, \ldots , a_m)\) 表示 \(1 \leq i \leq n\), \(1 \leq j \leq m\),每个装备需要花费 \(c_i\) ,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。

严格的定义是,如果脸哥买了 \(\mathbf{z_{i_1}}\), \(\ldots\) , \(\mathbf{z_{i_p}}\) 这 \(p\) 件装备,那么对于任意待决定的 \(\mathbf{z_h}\)​ ,不存在 \(b_1\), \(\ldots ,b_p\) 使得 \(b_1\mathbf{z_{i_1}} + \ldots + b_p\mathbf{z_{i_p}} = \mathbf{z_h}\) ​​ ( \(b_i\)​ 均是实数),那么脸哥就会买 \(\mathbf{z_h}\)​ ,否则 \(\mathbf{z_h}\)​ 对脸哥就是无用的了,自然不必购买。

举个例子, \(\mathbf{z_1}=(1, 2, 3), \ \mathbf{z_2}=(3, 4, 5), \ \mathbf{z_h}=(2, 3, 4)\), \(\ b_1 =\frac{1}{2}, \ b_2 =\frac{1}{2}\),就有 \(b_1\mathbf{z_1} + b_2\mathbf{z_2} = \mathbf{z_h}\) ,那么如果脸哥买了 \(\mathbf{z_1}\)​ 和 \(\mathbf{z_2}\)​ 就不会再买 \(\mathbf{z_h}\) 了。

脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?

输入输出格式

输入格式:

第一行两个数 n,m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,其中 \(c_i\) 表示购买第 i 件装备的花费。

输出格式:

一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费

输入输出样例

输入样例#1: 复制

3 3

1 2 3

3 4 5

2 3 4

1 1 2

输出样例#1: 复制

2 2

说明

如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。

对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。


题解

这是一道线性基的原理题。咕咕咕

线性基的思想是由向量来表示的。

也就是说:

存在\(b_1\), \(\ldots ,b_p\) 使得 \(b_1\mathbf{z_{i_1}} + \ldots + b_p\mathbf{z_{i_p}} = \mathbf{z_h}\) ​​ ( \(b_i\)​ 均是实数)

就像物理里面的力的分解一样。

多个不同方向和不同或相同大小的力可以构成另外一个合力。

其实异或只是线性基的另一种oi思想。

我们把向量的每一维看做二进制。只是这里的二进制是一个实数而不只是01序列。那么我们就用高斯消元的思想,不断的把从1到n维度的实数用之前的数去消掉。这样的话,就得到了一个类似而二进制的最高位1的数组的最高位下标就是最高位维度的数组。

是不是就和线性基一样了?

再加一个贪心维护让小价值的拼出大价值的就好了。


代码


#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
const double eps=1e-5;
int p[1001],n,m,ans,sum;
struct node{
int vi;
double x[1001];
}a[1001]; bool cmp(node a,node b){
return a.vi<b.vi;
} void solve()
{
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(fabs(a[i].x[j])>eps){
if(!p[j]){
p[j]=i;
sum++;
ans+=a[i].vi;
break;
}
else {
double t=(double)(1.0*a[i].x[j])/(1.0*a[p[j]].x[j]);
for(int k=j;k<=m;k++){
a[i].x[k]-=t*(a[p[j]].x[k]);
}
}
}
}
}
printf("%d %d",sum,ans);
} int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lf",&a[i].x[j]);
for(int i=1;i<=n;i++)
scanf("%d",&a[i].vi);
sort(a+1,a+n+1,cmp);
solve();
return 0;
}

[JLOI2015]装备购买(线性基)的更多相关文章

  1. BZOJ 4004 [JLOI2015]装备购买 | 线性基

    题目链接 Luogu P3265 题解 非常正常的线性基! 但是我不会线性基-- (吐槽:#define double long double 才过--) #include <cstdio> ...

  2. BZOJ 4004 [JLOI2015]装备购买 ——线性基

    [题目分析] 题目很简单,就是要维护一个实数域上的线性基. 仿照异或空间的线性基的方法,排序之后每次加入一个数即可. 卡精度,开long double 和 1e-6就轻松水过了. [代码] #incl ...

  3. bzoj4004 [JLOI2015]装备购买——线性基+贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004 今天讲课讲到的题,据说满足拟阵的性质,所以贪心是正确的: 总之就贪心,按价格从小到大排 ...

  4. BZOJ_4004_[JLOI2015]装备购买_线性基

    BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...

  5. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  6. BZOJ 4004: [JLOI2015]装备购买

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1154  Solved: 376[Submit][Statu ...

  7. 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元

    [BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...

  8. bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 337  Solved: 139[Submit][Status ...

  9. [JLOI2015]装备购买 (高斯消元)

    [JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...

随机推荐

  1. css文字超出变省略号...

    <style>.text1 {    width:200px;    overflow:hidden;    text-overflow:ellipsis;    -o-text-over ...

  2. Converting Legacy Chrome IPC To Mojo

    Converting Legacy Chrome IPC To Mojo Looking for Mojo Documentation? Contents Overview Deciding What ...

  3. ArrayList的使用方法

    1.什么是ArrayList    ArrayList就是传说中的动态数组,用MSDN中的说法,就是Array的复杂版本,它提供了如下一些好处: 动态的增加和减少元素 实现了ICollection和I ...

  4. python3安装xadmin失败

    环境win7 旗舰版.python3 使用pip install xadmin命令的时候出现了错误>:\ (⊙o⊙) 解决方法如下: 使用pip download xadmin 现将xadmin ...

  5. HDU 6051 If the starlight never fade(原根+推式子)

    题目大意: 设\(f(i)\)为使\((x+y)^i \equiv x^i (mod\ p)\)成立的(x,y)的对数.其中\(1 \leq x \leq p-1 , 1\leq y\leq m\), ...

  6. luogu P1365 WJMZBMR打osu! / Easy(期望DP)

    题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nnn次点击要做,成功了就是o,失败了就是 ...

  7. python学习--导入自己的包

    定义一个自己的方法包: def myFunc(x): if x > 10: return x else: return -x 在需要的地方导入包: # 导入自定义的方法包 from learn ...

  8. Docker学习总结(11)——八个Docker的真实应用场景

    [编者的话]Flux 7介绍了常用的8个Docker的真实使用场景,分别是简化配置.代码流水线管理.提高开发效率.隔离应用.整合服务器.调试能力.多租户环境.快速部署.我们一直在谈Docker,Doc ...

  9. 洛谷——P2615 神奇的幻方 【Noip2015 day1t1】

    https://www.luogu.org/problem/show?pid=2615 题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之 ...

  10. 洛谷 P2970 [USACO09DEC]自私的放牧Selfish Grazing

    P2970 [USACO09DEC]自私的放牧Selfish Grazing 题目描述 Each of Farmer John's N (1 <= N <= 50,000) cows li ...