题目链接:https://cn.vjudge.net/problem/HDU-1878

题意

中文题,而且就是单纯的欧拉回路

思路

  1. 判断连通图

    用并查集会很好,bfs亦可

    一时脑抽用bfs过了这个题,数据还是太弱
  2. 出度==入度

代码

并查集查连通

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn=1000;
struct Node{
int parent, rank;
Node(int parent=0, int rank=0):
parent(parent), rank(rank) {}
}node[maxn+5];
int n;
int find(int x){
return (node[x].parent==x)?x:(node[x].parent=find(node[x].parent));
} void join(int a, int b){
a=find(a); b=find(b);
if (a==b) return;
if (node[a].rank==node[b].rank) node[a].rank++;
if (node[a].rank>node[b].rank) node[b].parent=a;
else node[a].parent=b;
} bool connect(void){
for (int i=2; i<=n; i++)
if (find(1)!=find(i)) return false;
return true;
} int main(void){
while (scanf("%d", &n)==1 && n){
int m, cnt=0, vis[maxn+5]={0};
bool set[maxn+5]={false};
for (int i=1; i<=n; i++) node[i]=Node(i, 0); scanf("%d", &m);
for (int i=0, a, b; i<m; i++){
scanf("%d%d", &a, &b);
join(a, b);
vis[a]++; vis[b]++;
} int flag=false;
for (int i=1; i<=n; i++)
if (vis[i]%2) {flag=true; break;}
if (flag==false && !connect()) flag=true;
printf("%d\n", (flag)?0:1);
} return 0;
}

BFS查连通

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn=1000;
struct Edge{
int from, to;
bool vis;
Edge(int from=0, int to=0, int vis=false):
from(from), to(to), vis(vis) {}
};
vector<Edge> edge;
vector<int> G[maxn+5];
int n;
inline void addEdge(int from, int to){
edge.push_back(Edge(from, to, false));
G[from].push_back(edge.size()-1);
G[to].push_back(edge.size()-1);
} bool connective(void){
int cnt=1; bool vis[maxn+5]={false};
queue<int> que;
que.push(1); vis[1]=true;
while (que.size()){
int from=que.front(); que.pop();
if (cnt==n) return true;
for (int i=0; i<G[from].size(); i++){
Edge &e=edge[G[from][i]];
int to=(e.to==from)?e.from:e.to;
if (e.vis) continue;
vis[to]=true; e.vis=true; cnt++;
que.push(to);
}
}return false;
} int main(void){
while (scanf("%d", &n)==1 && n){
int m, vis[maxn+5]={0};
memset(G, 0, sizeof(G)); scanf("%d", &m);
for (int i=0, a, b; i<m; i++){
scanf("%d%d", &a, &b);
addEdge(a, b);// G[a][b]++; G[b][a]++;
vis[a]++; vis[b]++;
} int flag=false;
for (int i=1; i<=n; i++)
if (vis[i]%2) {flag=true; break;}
if (flag==false && connective()==0) flag=true;
printf("%d\n", (flag)?0:1);
} return 0;
}

并查集

Time Memory Length Lang Submitted
93ms 1524kB 1198 G++ 2018-03-14 17:22:31

BFS

Time Memory Length Lang Submitted
124ms 7016kB 1445 G++ 2018-03-14 17:03:18

HDU-1878 欧拉回路 欧拉回路的更多相关文章

  1. HDU 1878 欧拉回路(判断欧拉回路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...

  2. HDU 1878 欧拉回路

    并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...

  3. HDU 1878 欧拉回路 图论

    解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...

  4. hdu 1878 无向图的欧拉回路

    原题链接 hdu1878 大致题意: 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个无向图,问是否存在欧拉回路? 思路: 无向图存在欧拉回路的条件:1.图是连 ...

  5. HDU 1878 欧拉回路(无向图的欧拉回路)

    欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  6. HDU - 1878 欧拉回路 (连通图+度的判断)

    欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是否存在欧拉回路? Input 测试输入包含若干测试用例.每个测试用例的第1行给出两个正整数,分别是节点数 ...

  7. HDU 1878(1Y) (判断欧拉回路是否存在 奇点个数为0 + 一个联通分量 *【模板】)

    欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  8. hdu 1878 欧拉回路(联通<并查集> + 偶数点)

    欧拉回路Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. The Best Path HDU - 5883(欧拉回路 && 欧拉路径)

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  10. hdu 1878

    http://acm.hdu.edu.cn/showproblem.php?pid=1878 题意:就是判断这个图是不是一个欧拉回路的一个题, 思路:我觉得这个题可以用并查集判环加上判断每个点的度就行 ...

随机推荐

  1. [nginx]第一篇

    世界太大,我无法安心学习,决定看一个简单的. nginx-1.11.9的代码是nginx-0.5.38的两倍,决定看前者的. 阅读工具:UnderStand 3.1. 入口在nginx.c的195行. ...

  2. Android VelocityTracker类和Scroller类

    VelocityTracker类:用于跟踪触屏事件的速度,通常使用VelocityTracker的步骤如下: static VelocityTracker obtain():获取一个VelocityT ...

  3. 编程语言与Python学习(一)

    1.1 编程与编程语言 1.1.1 编程语言 计算机的发明,是为了用机器解放人力,而编程的目的则是将人类的思想流程按照某种能够被计算机识别的表达方式传递给计算机,从而达到让计算机能够像人脑一样自动执行 ...

  4. hiho1469 - 简单dp

    题目链接 题目大意: 从一个大正方形数组里面找一个小正方形,满足其中的每个位置上的数都恰好比他的左边的那个和上边的那个大1(如果左边或上边的那个不存在的话就无此要求). 比如 1 2 32 3 43 ...

  5. [APIO2012]派遣 可并堆(左偏树)

    没啥说的,自底向上合并大根堆即可. 一边合并,一边贪心弹堆顶直到堆的总和不大于预算. Code: #include <cstdio> #include <algorithm> ...

  6. JavaScript设计模式(biaoyansu)(2)

    单例模式实例 (创建类模式): let elBalance = document.getElementById('balance') function init () { var a = new Di ...

  7. 获取mapper

    static UpdateLogMapper updateLogMapper = (UpdateLogMapper)SpringContextUtil.getBean(UpdateLogMapper. ...

  8. java list序列化json 对象、json数组

    list<T> 序列化   json对象   ----------- JSONObject -------JSONObject.toJSONString(str);  解析:JSONObj ...

  9. 【jQuery05】通过按键 来切换 class

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. 紫书 习题 8-21 UVa 1621 (问题分析方法)

    知道是构造法但是想了挺久没有什么思路. 然后去找博客竟然只有一篇!!https://blog.csdn.net/no_name233/article/details/51909300 然后博客里面又说 ...