一、首先下载anaconda,下载:Anaconda2-4.3.1-Linux-x86_64.sh(https://repo.continuum.io/archive/)参考网址:https://www.cnblogs.com/willnote/p/6746499.html

二、安装anaconda,进入下载目录

如果没有修改的话,默认的下载目录是在 /home/下载/下,Ctrl+Alt+T打开终端,输入 cd /home,然后按两次Tab键,终端会自动补上用户名以及该用户名下的文件目录:

可以看到排列出的所有文件夹,继续输入 cd/home/dcrmg/下载 ,进入下载目录:

三. 安装Anaconda

下载的文件是以 .sh 为后缀的,名称比较长,我这里先给它给改名称为 Anaconda.sh。

在终端继续输入 sudo bash Anaconda.sh ,开始执行Anaconda安装。

会要求先输入用户密码,然后是许可文件,直接按Enter继续:

接受许可,输入yes,按回车:

提示默认安装路径是 /home/dcrmg/anaconda2 ,按回车确认,开始安装:

四. 添加环境变量

安装完成之后,会提示是否添加环境变量,输入 yes 后回车:

这样Anaconda安装成功了。终端窗口提示要使环境变量生效,需要重新打开一个终端。在一个新开的终端里输入python,提示信息显示已经不是Linux系统自带的python了:

或者也可以在当前的终端里让刚配置的环境变量生效,方法是在安装Anaconda的终端中输入:

source ~/.bashrc

五、打开jupyter notebook
在终端输入jupyter notebook即可,如下图:

Anaconda仓库镜像

官方下载更新工具包的速度很慢,所以继续添加清华大学 TUNA提供的Anaconda仓库镜像,在终端或cmd中输入如下命令进行添加

1
2
$ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
$ conda config --set show_channel_urls yes

备注:如果出现conda命令未找到,查看:https://www.cnblogs.com/chamie/p/10009193.html

Tensorflow安装

在终端或cmd中输入以下命令搜索当前可用的tensorflow版本

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
(可以略掉)$ anaconda search -t conda tensorflow
 
Using Anaconda API: https://api.anaconda.org
Run 'anaconda show <USER/PACKAGE>' to get more details:
Packages:
     Name                      |  Version | Package Types   | Platforms     
     ------------------------- |   ------ --------------- ---------------
     HCC/tensorflow            |    1.0.0 | conda           | linux-64      
     HCC/tensorflow-cpucompat  |    1.0.0 | conda           | linux-64      
     HCC/tensorflow-fma        |    1.0.0 | conda           | linux-64      
     SentientPrime/tensorflow  |    0.6.0 | conda           | osx-64        
                                          : TensorFlow helps the tensors flow
     acellera/tensorflow-cuda  |   0.12.1 | conda           | linux-64      
     anaconda/tensorflow       |    1.0.1 | conda           | linux-64      
     anaconda/tensorflow-gpu   |    1.0.1 | conda           | linux-64      
     conda-forge/tensorflow    |    1.0.0 | conda           | linux-64, win-64, osx-64
                                          : TensorFlow helps the tensors flow
     creditx/tensorflow        |    0.9.0 | conda           | linux-64      
                                          : TensorFlow helps the tensors flow
     derickl/tensorflow        |   0.12.1 | conda           | osx-64        
     dhirschfeld/tensorflow    | 0.12.0rc0 | conda           | win-64        
     dseuss/tensorflow         |          | conda           | osx-64        
     guyanhua/tensorflow       |    1.0.0 | conda           | linux-64      
     ijstokes/tensorflow       | 2017.03.03.1349 | conda, ipynb    | linux-64      
     jjh_cio_testing/tensorflow |    1.0.1 | conda           | linux-64      
     jjh_cio_testing/tensorflow-gpu |    1.0.1 | conda           | linux-64      
     jjh_ppc64le/tensorflow    |    1.0.1 | conda           | linux-ppc64le 
     jjh_ppc64le/tensorflow-gpu |    1.0.1 | conda           | linux-ppc64le 
     jjhelmus/tensorflow       | 0.12.0rc0 | conda, pypi     | linux-64, osx-64
                                          : TensorFlow helps the tensors flow
     jjhelmus/tensorflow-gpu   |    1.0.1 | conda           | linux-64      
     kevin-keraudren/tensorflow |    0.9.0 | conda           | linux-64      
     lcls-rhel7/tensorflow     |   0.12.1 | conda           | linux-64      
     marta-sd/tensorflow       |    1.0.1 | conda           | linux-64      
                                          : TensorFlow helps the tensors flow
     memex/tensorflow          |    0.5.0 | conda           | linux-64, osx-64
                                          : TensorFlow helps the tensors flow
     mhworth/tensorflow        |    0.7.1 | conda           | osx-64        
                                          : TensorFlow helps the tensors flow
     miovision/tensorflow      | 0.10.0.gpu | conda           | linux-64, osx-64
     msarahan/tensorflow       | 1.0.0rc2 | conda           | linux-64      
     mutirri/tensorflow        | 0.10.0rc0 | conda           | linux-64      
     mwojcikowski/tensorflow   |    1.0.1 | conda           | linux-64      
     rdonnelly/tensorflow      |    0.9.0 | conda           | linux-64      
     rdonnellyr/r-tensorflow   |    0.4.0 | conda           | osx-64        
     test_org_002/tensorflow   | 0.10.0rc0 | conda           |               
Found 32 packages

选择一个较新的CPU或GPU版本,如jjh_cio_testing/tensorflow-gpu的1.0.1版本,输入如下命令查询安装命令

1
2
3
4
5
6
7
8
9
10
11
12
(可以略掉)$ anaconda show jjh_cio_testing/tensorflow-gpu
 
Using Anaconda API: https://api.anaconda.org
Name:    tensorflow-gpu
Summary:
Access:  public
Package Types:  conda
Versions:
   + 1.0.1
 
To install this package with conda run:
     conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu

使用最后一行的提示命令进行安装

1
2
3
4
5
6
7
8
9
10
11
12
$ conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu==1.3.0
 
Fetching package metadata .............
Solving package specifications: .
 
Package plan for installation in environment /home/will/anaconda2:
 
The following packages will be SUPERSEDED by a higher-priority channel:
 
    tensorflow-gpu: 1.0.1-py27_4 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free --1.0.1-py27_4 jjh_cio_testing
 
Proceed ([y]/n)?

conda会自动检测安装此版本的Tensorflow所依赖的库,如果你的Anaconda缺少这些依赖库,会提示你安装。因为我之前已经安装过了,所以这里只提示我安装Tensorflow。输入y并回车之后等待安装结束即可

  • 可以选择次高版本的Tensorflow安装,因为最新版本可能清华 TUNA的仓库镜像库没有及时更新,而官方更新连接总是失败,我最开始选择了jjhelmus/tensorflow-gpu的1.0.1版本,其他依赖 库清华 TUNA的仓库镜像有资源,而到最后jjhelmus/tensorflow-gpu版本的Tensorflow安装包总是下载不下来,尝试20多次之后 换了一个1.0.0的版本,终于顺利安装成功

进入python,输入

1
import tensorflow as tf 

如果没有报错说明安装成功。

(2)PIP安装tensorflow

安装完CUDA 8 和 cuDNN 5后, 在终端输入 sudo apt-get install libcupti-dev(参考:https://www.cnblogs.com/zengcv/p/6564517.html)

Ubuntu14.04默认安装的Python2.7.6

先安装Python库

1
sudo apt-get install python-pip python-dev 

安装tensorflow:

      (1)在线安装 

                sudo pip install https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.1-cp27-none-linux_x86_64.whl 

   (2)下载安装(由于Ubuntu系统下,网上比较慢,可以在windows下载。推荐这种安装方法)

sudo pip install tensorflow_gpu-1.0.1-cp27-none-linux_x86_64.whl

    (下载地址:https://pypi.org/project/tensorflow-gpu/1.0.1/#files)

参考文献:

      1.https://www.cnblogs.com/chamie/p/8876271.html

      2.https://www.cnblogs.com/hezhiyao/p/8328634.html

安装anaconda和tensorflow的更多相关文章

  1. 安装anaconda与tensorflow

    在安装Anaconda之前,有的已经安装过一个Python版本了,但是又不想删除这个Python版本,该怎么办呢? 安装anaconda与tensorflow一条龙 jupyter notebook ...

  2. windows10安装anaconda,配置tensorflow

    1.安装anaconda 3.5.5 默认安装,注意,把添加到path勾选上,其他默认安装(能搜到这篇文章,相信大家都有过变成经验,这些环境变量的重要性就不要窝在多说了) 2.以管理员身份,打开ana ...

  3. 在 Ubuntu16.04上安装anaconda+Spyder+TensorFlow(支持GPU)

    TensorFlow 官方文档中文版 http://www.tensorfly.cn/tfdoc/get_started/introduction.html https://zhyack.github ...

  4. MacOS上安装Anaconda+Pycharm+TensorFlow+Keras

    一.安装Anaconda 登录https://www.anaconda.com/download/#macos,下载Anaconda3-5.3.1-MacOSX-x86_64.pkg 二.安装Pych ...

  5. Ubuntu下安装Anaconda和tensorflow

    官方指南:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/docs_src/install/install_linux. ...

  6. 安装anaconda和tensorflow(windows)

    Anaconda安装时勾选All User和启用环境变量可切换为清华镜像conda config --add channels https://mirrors.tuna.tsinghua.edu.cn ...

  7. windows下安装anaconda和tensorflow

    anaconda确实很好用,省去了很多麻烦,现在我个人推荐直接使用anaconda. anaconda的特点:可以存在多个python环境,要使用某一个环境的话,就需要切换到这个环境,安装.卸载包都是 ...

  8. 关于win系统下Anaconda与TensorFlow的安装相关事宜以及错误:ImportError: No module named 'tensorflow'的解决

    1.安装TensorFlow之前应该先安装Anaconda,不需要安装python,否则会出问题,我安装的版本是Anaconda3-4.2.0-Windows-x86_64,在这个链接上可以找到--h ...

  9. Windows中Anaconda,Tensorflow 和 Pycharm的安装和配置

    Anaconda完全入门指南 https://www.jianshu.com/p/eaee1fadc1e9                 [安装不要按此条链接进行] Windows中 Anacond ...

随机推荐

  1. ZBrush软件中的笔触类型

    在ZBrush® 中我们通过各种笔触类型,确定在使用ZBrush®画笔进行绘制时画笔的变化方式及状态.使用多种画笔绘制根据选择不同的笔触组合绘制,能够得到繁多变化丰富的制作效果. 选择笔触的类型 点击 ...

  2. jenkins 展示报告

    1.下载插件 HTML Publisher plugin 2.设置说明 3.展示css 下载插件 (1).Startup Trigger: 可实现在Jenkins节点(master/slave)启动时 ...

  3. code-reading-notes--libyang-1

    API struct lyd_node * lyd_parse_xml(struct ly_ctx *ctx, struct lyxml_elem **root, int options, ...) ...

  4. h5性能优化,细节决定结果。

    介绍一些最近整理的优化细节.图片压缩什么的就不说了,这是优化必须做的.今天就说一下大家写代码时可以培养的优化的细节点. 不滥用float.不滥用web字体. Float在渲染时计算量比较大,并且会脱标 ...

  5. multiple definition of

    总结了解决multiple definition of的方法: 问题原因:    当多个文件包含同一个头文件时,并且你的.H里面没有加上条件编译#ifndef TEST_H#define TEST_H ...

  6. 论文阅读《End-to-End Learning of Geometry and Context for Deep Stereo Regression》

    端到端学习几何和背景的深度立体回归 摘要     本文提出一种新型的深度学习网络,用于从一对矫正过的立体图像回归得到其对应的视差图.我们利用问题(对象)的几何知识,形成一个使用深度特征表示的代价量(c ...

  7. RabbitMQ消息可靠性分析 - 简书

    原文:RabbitMQ消息可靠性分析 - 简书 有很多人问过我这么一类问题:RabbitMQ如何确保消息可靠?很多时候,笔者的回答都是:说来话长的事情何来长话短说.的确,要确保消息可靠不只是单单几句就 ...

  8. Jenkins学习总结(5)——免费DevOps开源工具简介

    一:开发工具 1.版本控制系统 Git Git是一个开源的分布式版本控制系统,用以有效.高速的处理从很小到非常大的项目版本管理. 2.代码托管平台 GitLab GitLab是一个利用Ruby on ...

  9. 第十一章 Servlet MVC模式

    内包含案例,基于jsp+servlet的:MVC模式计算器:MVC模式登陆 第十一章 Servlet MVC模式 模型-视图-控制器(model-view-controller),简称MVC.MVC是 ...

  10. bzoj1305: [CQOI2009]dance跳舞(二分答案+网络流)

    1305: [CQOI2009]dance跳舞 题目:传送门 题解: 一眼网络流基础建模...然后就GG了 二分答案+拆点建边+最大流判断: 把男女生拆为男1,男2,女1,女2 1.男1和男2还有女1 ...