POJ 1966
求的是无向图的点连通度。开始便想到网络流,既然选的是点,当然就要拆点加边了。但无论如何也不敢往枚举源汇点的方向想,因为网络流复习度很高。看看网上大牛的,都是枚举,再看数据,原来N才50个点,枚举无压力啊。看来自己以后要注意分析一下复杂度了。
总结:
1)无向图点连通度
看来没有什么好的算法。网络流。把点i拆成i->i‘容量自然是1,把无向图的边也拆成两条有向边i'->j,j'->i,容量为无穷。然后,枚举求s'->t的最小割就可了。
2)有向图点连通度
这个更简单了,单纯拆点建图就可以了。
3)无向图边连通度。
可以用store-wanger求最小割。边权为1
4)有向图边连通度
就是网络流求最小割
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int INF=0x3f3f3f3;
const int MAXN= ;
const int MAXM=; struct Node{
int from,to,next;
int cap;
}edge[MAXM];
int tol; int dep[MAXN];
int head[MAXN];
bool maze[MAXN][MAXN];
int n,m;
void init(){
tol=;
memset(head,-,sizeof(head));
}
void addedge(int u,int v,int w){
edge[tol].from=u;
edge[tol].to=v; edge[tol].cap=w; edge[tol].next=head[u];
head[u]=tol++;
edge[tol].from=v;
edge[tol].to=u;
edge[tol].cap=;
edge[tol].next=head[v];
head[v]=tol++;
} int BFS(int start,int end){
int que[MAXN];
int front,rear; front=rear=;
memset(dep,-,sizeof(dep));
que[rear++]=start;
dep[start]=;
while(front!=rear){
int u=que[front++];
if(front==MAXN)front=;
for(int i= head[u];i!=-; i=edge[i].next){
int v=edge[i].to;
if(edge[i].cap>&& dep[v]==-){
dep[v]=dep[u]+;
que[rear++]=v;
if(rear>=MAXN) rear=;
if(v==end)return ;
}
}
}
return ;
}
int dinic(int start,int end){
int res=;
int top;
int stack[MAXN];
int cur[MAXN];
while(BFS(start,end)){
memcpy(cur,head, sizeof(head));
int u=start;
top=;
while(){
if(u==end){
int min=INF;
int loc;
for(int i=;i<top;i++)
if(min>edge [stack[i]].cap) {
min=edge [stack[i]].cap;
loc=i;
}
for(int i=;i<top;i++){
edge[stack[i]].cap-=min;
edge[stack[i]^].cap+=min;
}
res+=min;
top=loc;
u=edge[stack[top]].from;
}
for(int i=cur[u]; i!=-; cur[u]=i=edge[i].next)
if(edge[i].cap!= && dep[u]+==dep[edge[i].to])
break;
if(cur[u] !=-){
stack [top++]= cur[u];
u=edge[cur[u]].to;
}
else{
if(top==) break;
dep[u]=-;
u= edge[stack [--top] ].from;
}
}
}
return res;
} void build(){
init();
for(int i=;i<n;i++){
for(int j=;j<n;j++){
if(i==j)
addedge(i*,i*+,);
else if(maze[i][j]){
addedge(i*+,j*,INF);
}
}
} } int main(){
int u,v;
while(scanf("%d%d",&n,&m)!=EOF){
memset(maze,false,sizeof(maze));
for(int i=;i<m;i++){
scanf(" (%d,%d)",&u,&v);
maze[u][v]=maze[v][u]=true;
}
int ans=INF;
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
build();
if(!maze[i][j]){
int res=dinic(i*+,j*);
if(res<ans) ans=res;
if(ans==) break;
}
}
if(ans==) break;
}
if(ans>=n){ printf("%d\n",n); continue; }
printf("%d\n",ans);
}
return ;
}
POJ 1966的更多相关文章
- poj 1966(求点连通度,边连通度的一类方法)
题目链接:http://poj.org/problem?id=1966 思路:从网上找了一下大牛对于这类问题的总结:图的连通度问题是指:在图中删去部分元素(点或边),使得图中指定的两个点s和t不连通 ...
- POJ 1966:Cable TV Network(最小点割集)***
http://poj.org/problem?id=1966 题意:给出一个由n个点,m条边组成的无向图.求最少去掉多少点才能使得图中存在两点,它们之间不连通. 思路:将点i拆成a和b,连一条a-&g ...
- POJ 1966 Cable TV Network
Cable TV Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 4702 Accepted: 2173 ...
- uva 1660 & poj 1966(点连通度)
Cable TV Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 4267 Accepted: 2003 ...
- POJ 1966 Cable TV Network(顶点连通度的求解)
Cable TV Network Time Limit: 1000MS Memory Limit: 30000K Total Submissi ...
- POJ 1966 Cable TV Network (无向图点连通度)
[题意]给出一个由n个点,m条边组成的无向图.求最少去掉多少点才能使得图中存在两点,它们之间不连通. [思路]回想一下s->t的最小点割,就是去掉多少个点能使得s.t不连通.那么求点连通度就枚举 ...
- poj 1966 Cable TV Network 顶点连通度
题目链接 给一个图, n个点m条边, 求至少去掉多少个点可以使得图不再联通.随便指定一个点为源点, 枚举其他点为汇点的情况, 跑网络流, 求其中最小的情况. 如果最后ans为inf, 说明是一个完全图 ...
- POJ 1966 ZOJ 2182 Cable TV Network
无向图顶点连通度的求解,即最少删除多少个点使无向图不连通. 我校“荣誉”出品的<图论算法理论.实现及其应用>这本书上写的有错误,请不要看了,正确的是这样的: 对于每个顶点,分成两个点,v和 ...
- POJ 1966 Cable TV Network (点连通度)【最小割】
<题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见 >>> 本题是求点连通度, ...
- POJ 1966 Cable TV Network (算竞进阶习题)
拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...
随机推荐
- hdu 5823 color II —— 子集DP
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5823 看博客:http://www.cnblogs.com/SilverNebula/p/5929550. ...
- 269D
扫描线+dp 先对坐标排序,然后·用set维护端点,每次插入左端点,扫描到右端点时删除.每次考虑新插入时分割了哪两个木板,自己分别连边,再删除原来的边,最后dp(好像得维护used,有环) #incl ...
- AFN上传多张图片
AFN上传多张图片代码: AFHTTPSessionManager *sessionManager = [AFHTTPSessionManager manager]; sessionManager.r ...
- 【JAVA练习】- 给定精度求圆周率π
给定一个精度求圆周率π的近似值 给定公式:π/4=1-1/3+1/5-1/7+1/9-... public static void main(String[] args) { System.out.p ...
- intellij IDEA常见操作
1.中文乱码设置:file - setting - Editor - File Encodings 设置为UTF-8 2.tomcat重新启动:Ctrl-F5,或者左上角 3.删除progect 先c ...
- oracle中sum求和问题
如列表所示:都是选填字段name age salary weight张三 18 20李四 17王五 21燕小六 15 22 sum(age+salar ...
- C# 查找、结束进程 - 通过进程名精确、模糊查找、结束进程
/// <summary> /// 根据“精确进程名”结束进程 /// </summary> /// <param name="strProcName" ...
- Java多线程中常见的几个问题
我们都知道,在java中要想实现多线程,有两种手段,一种是继续Thread类,另外一种是实现Runable接口. 1.进程和线程的区别是什么? 进程是执行着的应用程序,而线程是进程内部的一个执行序列. ...
- YTBro Video 2016-07-30 Sat
明日天气:多云转阴,32~24度 运动向 健身 20中极致疯狂的俯卧撑,新手请勿尝试 跑酷 大神放大招,招招见血,不信你看 赛事 2016年世界室内田径锦标赛 男子4×400接力决赛 台球 RP集中爆 ...
- js 记住我
$(function(){ $("#btn_login").click(function() { var anv=$("#an").val(); //登录名 v ...