题目大意:太长了略

splay调了两天一直WA弃疗了

首先,我们可以猜一个贪心,如果买/卖,就一定都买/卖掉,否则不买/卖

反正货币的行情都是已知的,没有任何风险,所以肯定要选择最最最优的方案了

容易得到方程

$dp[i]=max(dp[i-1],a[i]*\frac{dp[j]*rate[j]}{rate[j]*a[j]+b[j]}+b[i]*\frac{dp[j]}{rate[j]*a[j]+b[j]})$

显然是要用凸优化了

splay非常无脑,splay维护此题的凸包,需要找前驱,删前驱,找后继,删后继,一大堆特判...绝对恶心到吐

所以这是一篇$CDQ$分治题解

令$x=\frac{dp[j]}{rate[j]*a[j]+b[j]},y=x*rate[j]$

移项,可得

$dp[i]-b[i]*x=a[i]*y$

$y=\frac{dp[i]}{a[i]}-\frac{b[i]}{a[i]}x$

发现斜率$k=-\frac{b[i]}{a[i]}$是一定的,我们在外层把斜率k从小到大排序,可以优化掉一个$log$,递归时按$x$从小到大排序

这样,递归时,每一层内部都是按$k$有序的,把这一层按照时间分为左右两个部分(不要破坏$k$的有序状态)

先递归处理左半个区间,回溯后,左半部分的答案已知,且不会被右半部分的答案所影响

且左半部分按$x$从小到大排序,右半部分按斜率$k$从小到大排序,取最小值,由于$k<0$,用单调栈维护一个上凸包即可

处理完了左边对右边的贡献,递归处理右半部分

回溯时,先处理$dp[i]=dp[i-1]$的情况,再按$x$排序,回溯到上一层

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 101000
#define M1 205
#define ll long long
#define dd double
#define uint unsigned int
#define inf 233333333
#define il inline
using namespace std; const dd eps=(1e-);
int n,m;
int stk[N1];
dd A[N1],B[N1],r[N1],X[N1],Y[N1],K[N1],f[N1];
//struct node{dd x,y,k,ans;int id;};
int cmp1(int s1,int s2){return K[s1]-K[s2]<;}
int id[N1],tmp[N1];
dd get_slope(int s1,int s2){
if(!s2) return inf;
return (Y[s1]-Y[s2])/(X[s1]-X[s2]);
}
void CDQ(int L,int R)
{
if(R-L<=) return;
int M=(L+R)>>;
int tp=,i,j,pl=L,pr=M,k,cnt;
for(int i=L;i<R;i++)
if(id[i]<M) tmp[pl++]=id[i];
else tmp[pr++]=id[i];
for(int i=L;i<R;i++)
id[i]=tmp[i];
CDQ(L,M);
for(i=L;i<M;i++)
{
k=id[i];
if(tp>&&fabs(X[stk[tp]]-X[k])<eps&&Y[k]-Y[stk[tp]]<eps) continue;
while(tp>&&get_slope(stk[tp],stk[tp-])<=get_slope(k,stk[tp-]))
tp--;
stk[++tp]=k;
}
for(i=M;i<R;i++)
f[i]=max(f[i-],f[i]);
for(i=M;i<R;i++)
{
while(tp>&&get_slope(stk[tp],stk[tp-])<=K[id[i]])
tp--;
k=id[i],j=stk[tp];
f[k]=max(f[k],A[k]*Y[j]+B[k]*X[j]);
X[k]=f[k]/(A[k]*r[k]+B[k]);
Y[k]=r[k]*X[k];
}
CDQ(M,R);
i=L,cnt=L,j=M;
while(i<M&&j<R){
if(X[id[i]]<X[id[j]])
tmp[cnt++]=id[i],i++;
else
tmp[cnt++]=id[j],j++;
}
while(i<M) tmp[cnt++]=id[i],i++;
while(j<R) tmp[cnt++]=id[j],j++;
for(i=L;i<R;i++)
id[i]=tmp[i],f[id[i]]=max(f[id[i]],f[id[i]-]);
};
dd S;
int main()
{
//freopen("t1.in","r",stdin);
scanf("%d%lf",&n,&S);
for(int i=;i<=n;i++)
{
scanf("%lf%lf%lf",&A[i],&B[i],&r[i]);
K[i]=-B[i]/A[i];id[i]=i;
}
f[]=S,X[]=S/(A[]*r[]+B[]),Y[]=X[]*r[];
sort(id+,id+n+,cmp1);
CDQ(,n+);
dd ans=;
for(int i=;i<=n;i++)
ans=max(ans,f[i]);
printf("%.3lf\n",ans);
return ;
}

BZOJ 1492 [NOI2007]货币兑换Cash (CDQ分治/splay 维护凸包)的更多相关文章

  1. BZOJ 1492: [NOI2007]货币兑换Cash [CDQ分治 斜率优化DP]

    传送门 题意:不想写... 扔链接就跑 好吧我回来了 首先发现每次兑换一定是全部兑换,因为你兑换说明有利可图,是为了后面的某一天两种卷的汇率差别明显而兑换 那么一定拿全利啊,一定比多天的组合好 $f[ ...

  2. BZOJ 1492: [NOI2007]货币兑换Cash 斜率优化 + splay动态维护凸包

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

  3. [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化)

    [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化) 题面 分析 dp方程推导 显然,必然存在一种最优的买卖方案满足:每次买进操作使用完所有的人民币:每次卖出操作卖出所有 ...

  4. bzoj1492[NOI2007]货币兑换Cash cdq分治+斜率优化dp

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5541  Solved: 2228[Submit][Sta ...

  5. BZOJ 1492: [NOI2007]货币兑换Cash( dp + 平衡树 )

    dp(i) = max(dp(i-1), x[j]*a[i]+y[j]*b[i]), 0<j<i. x, y表示某天拥有的最多钱去买金券, 金券a和金券b的数量. 然后就很明显了...平衡 ...

  6. bzoj 1492 [NOI2007]货币兑换Cash(斜率dp+cdq分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1492   [题意] 有AB两种货币,每天可以可以付IPi元,买到A券和B券,且A:B= ...

  7. bzoj 1492: [NOI2007]货币兑换Cash【贪心+斜率优化dp+cdq】

    参考:http://www.cnblogs.com/lidaxin/p/5240220.html 虽然splay会方便很多,但是懒得写,于是写了cdq 首先要想到贪心的思路,因为如果在某天买入是能得到 ...

  8. ●BZOJ 1492 [NOI2007]货币兑换Cash

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1492 题解: 斜率优化DP,CDQ分治 定义$DP[i]$为第i天结束后的最大收益. 由于题 ...

  9. bzoj 1492: [NOI2007]货币兑换Cash

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

随机推荐

  1. sublime 自定义快捷生成代码块

    菜单栏目选 Tools(工具) =>Developer(插件开发)=>New Snippet....(新建代码片段),如图: 接着会新开一个标签页,会附带一些内容:如图: 将“Hello, ...

  2. js:Array对象常用方法介绍

    前言 在js中,数组作为一个特殊的对象.是我们常用的数据格式.今天就来梳理一下常用的数组方法. 1.基础 几种基础的就简单介绍一下:创建数组 var arr1 = new Array(); //括号可 ...

  3. FFMPEG 音频转换命令

    音频转换: .转换amr到mp3: ffmpeg -i shenhuxi.amr amr2mp3.mp3 .转换amr到wav: ffmpeg -acodec libamr_nb -i shenhux ...

  4. 【hihocoder 1303】模线性方程组

    [题目链接]:http://hihocoder.com/problemset/problem/1303 [题意] [题解] /* x % m[1] = r[1] x % m[2] = r[2] x = ...

  5. switch 的穿透, 以及穿透利用

    switch 穿透测试: outputs: 添加break 阻止switch穿透: outputs: 利用switch的穿透功能:

  6. 关于 xftp 上传文件时,仅仅是上传了0字节的问题

    有两次,上传的时候出现了问题.能上传.可是上传过去的文件都是0字节.查看了各种配置,都是正常的:百思不得解: 后来想起近期在linuxserver运行apt-get update时,中间曾失败过,于是 ...

  7. Codeforces Round #FF (Div. 2):B. DZY Loves Strings

    B. DZY Loves Strings time limit per test 1 second memory limit per test 256 megabytes input standard ...

  8. C#趣味程序---三色球问题

    问题:若一个口袋中放有12个球,3红3白和6黑,问从袋中随意取8个球,有多少种不同的颜色搭配? using System; namespace ConsoleApplication1 { class ...

  9. UVA 11609 - Anne's game cayley定理

    Lily: “Chantarelle was part of my exotic phase.”Buffy: “It’s nice. It’s a mushroom.”Lily: “It is? Tha ...

  10. Swift String转Character数组

    通过String的characters方法,将String转Character数组 例如: let characters:Array<Character> = Array("01 ...