取石子游戏 bzoj-1874 BeiJing2009 WinterCamp

题目大意题目链接

注释:略。


想法

我们通过$SG$函数的定义来更新$SG$的转移。

如果是寻求第一步的话我们只需要求一下到底是哪个使得$SG$值是0即可。

Code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 15
#define V 1010
using namespace std;
int sg[V],a[N],b[N];
int n,m;
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
int SG(int x)
{
if(x<0) return 1001;
if(sg[x]!=-1) return sg[x];
bool vis[V]; memset(vis,false,sizeof vis);
for(int i=1;i<=m;i++) vis[SG(x-b[i])]=true;
for(int i=0;i<=1000;i++)
{
if(!vis[i]) return sg[x]=i;
}
}
int main()
{
memset(sg,-1,sizeof sg);
n=rd(); for(int i=1;i<=n;i++) a[i]=rd();
m=rd(); for(int i=1;i<=m;i++) b[i]=rd();
int ans=0; for(int i=1;i<=n;i++) ans^=SG(a[i]);
if(ans)
{
puts("YES");
for(int i=1;i<=n;i++)
{
int now=ans^SG(a[i]);
for(int j=1;j<=m;j++)
{
if(a[i]>=b[j])
{
if(!(now^SG(a[i]-b[j])))
{
printf("%d %d\n",i,b[j]);
return 0;
}
}
}
}
}
puts("NO");
// for(int i=0;i<=10;i++) printf("%d\n",SG(i));
return 0;
}

小结:无。

[bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论的更多相关文章

  1. bzoj1874 [BeiJing2009 WinterCamp]取石子游戏

    1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 925  Solved: 381[ ...

  2. 【博弈论】【SG函数】【枚举】bzoj1874 [BeiJing2009 WinterCamp]取石子游戏

    枚举第一步可能达到的状态,判断是否是必败态即可. #include<cstdio> #include<set> #include<cstring> using na ...

  3. [BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】

    题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...

  4. bzoj 1874: [BeiJing2009 WinterCamp]取石子游戏【博弈论】

    先预处理出来sg值,然后先手必败状态就是sg[a[i]]的xor和为0(nim) 如果xor和不为0,那么一定有办法通过一步让xor和为0,具体就是选一个最大的sg[a[i]],把它去成其他sg值的x ...

  5. 1874: [BeiJing2009 WinterCamp]取石子游戏 - BZOJ

    Description小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问 ...

  6. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]

    小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...

  7. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)

    Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 871  Solved: 365[Submit][Status][Discuss] Description ...

  8. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏

    Time Limit: 5 Sec Memory Limit: 162 MB Submit: 957 Solved: 394 [Submit][Status][Discuss] Description ...

  9. [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数

    Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...

随机推荐

  1. 聊聊mq中消息消费的几种方式

    mq系列文章 对mq了解不是很多的,可以看一下下面两篇文章: 聊聊mq的使用场景 聊聊业务系统中投递消息到mq的几种方式 聊聊消息消费的几种方式 如何确保消息至少消费一次 如何保证消息消费的幂等性 本 ...

  2. mysql 修改 root 密码

    5.76中加了一些passwd的策略 MySQL's validate_password plugin is installed by default. This will require that ...

  3. 归并排序算法及其JS实现

    归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(con ...

  4. MTK处理器手机 解锁Bootloader 教程

    目前很多手机都需要解锁Bootloader之后才能进行刷机操作   本篇教程教你如何傻瓜式解锁Bootloader 首先需要在设置-关于手机 找到版本号(个别手机可能是内核版本号,甚至其他) 然后 快 ...

  5. Python学习 Day 1-简介 安装 Hello world

    简介 Python(英语发音:/ˈpaɪθən/), 是一种面向对象.解释型计算机程序设计语言,由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年,Python 源 ...

  6. 关于Farseer.net轻量级ORM开源框架 V1.0 概念版本开发的消息

    V0.2版的开源距离今天(05年03月)已有近3年的时间.可以说这个版本已经有点落伍的感觉了,呵呵. V0.2版至今一直处于BUG的修复及一些细小功能的增加,所以版本号上一直没有变化. 其实在这1.2 ...

  7. 6-Java-C(小题答案)

    1.15 2.36 3.0.58198 4.return v.size()-v.indexOf(n) 5."%"+(width-s.length()-2)/2+"s%s% ...

  8. 拦截导弹问题(Noip1999)

    1322:[例6.4]拦截导弹问题(Noip1999) 时间限制: 1000 ms         内存限制: 65536 KB提交数: 3843     通过数: 1373 [题目描述] 某国为了防 ...

  9. Vue+Bootstrap实现购物车程序(3)

    效果展示:(说明:使用webpack重构购物车程序,使用vue-cli生成项目脚手架) 文件结构: 代码: (1)将原来编写的btn-grp组件单独编写到BtnGrp.vue文件中 可以看到现在代码清 ...

  10. Sql Server cross apply和outer apply

    with result as( select t.str from( ' str union all ' str union all ' str union all ' str union all ' ...