poj_3006_Dirichlet's Theorem on Arithmetic Progressions_201407041030
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 15398 | Accepted: 7714 |
Description
If a and d are relatively prime positive integers, the arithmetic sequence beginning with a and increasing by d, i.e., a, a + d, a + 2d, a + 3d, a + 4d, ..., contains infinitely many prime numbers. This fact is known as Dirichlet's Theorem on Arithmetic Progressions, which had been conjectured by Johann Carl Friedrich Gauss (1777 - 1855) and was proved by Johann Peter Gustav Lejeune Dirichlet (1805 - 1859) in 1837.
For example, the arithmetic sequence beginning with 2 and increasing by 3, i.e.,
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, ... ,
contains infinitely many prime numbers
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, ... .
Your mission, should you decide to accept it, is to write a program to find the nth prime number in this arithmetic sequence for given positive integers a, d, and n.
Input
The input is a sequence of datasets. A dataset is a line containing three positive integers a, d, and n separated by a space. a and d are relatively prime. You may assume a <= 9307, d <= 346, and n <= 210.
The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.
Output
The output should be composed of as many lines as the number of the input datasets. Each line should contain a single integer and should never contain extra characters.
The output integer corresponding to a dataset a, d, n should be the nth prime number among those contained in the arithmetic sequence beginning with a and increasing by d.
FYI, it is known that the result is always less than 106 (one million) under this input condition.
Sample Input
367 186 151
179 10 203
271 37 39
103 230 1
27 104 185
253 50 85
1 1 1
9075 337 210
307 24 79
331 221 177
259 170 40
269 58 102
0 0 0
Sample Output
92809
6709
12037
103
93523
14503
2
899429
5107
412717
22699
25673
Source
#include <stdio.h>
#include <string.h>
#define MAX 1000000
int s[MAX];
int main()
{
int a,d,n,i,j,k;
memset(s,,sizeof(s));
s[]=;
for(i=;i<MAX/;i++)
{
if(!s[i])
{
for(j=i+i;j<MAX;j+=i)
s[j]=;
}
}
while(scanf("%d%d%d",&a,&d,&n),a||d||n)
{
int num=,t;
for(i=;;i++)
{
if(s[a+i*d]==)
{
num++;
if(num==n)
{
t=a+i*d;
break;
}
}
}
printf("%d\n",t);
}
return ;
}
//本想着会超时,没想到竟然没有超时,100万以内的素数282MS

poj_3006_Dirichlet's Theorem on Arithmetic Progressions_201407041030的更多相关文章
- Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- Dirichlet's Theorem on Arithmetic Progression
poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- Fundamental theorem of arithmetic 为什么1不是质数
https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic In number theory, the fundamental th ...
- poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】
题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...
- (素数求解)I - Dirichlet's Theorem on Arithmetic Progressions(1.5.5)
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0
http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...
- poj 3006 Dirichlet's Theorem on Arithmetic Progressions
题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 快筛质数
题目大意:给出一个等差数列,问这个等差数列的第n个素数是什么. 思路:这题主要考怎样筛素数,线性筛.详见代码. CODE: #include <cstdio> #include <c ...
随机推荐
- redis 在windows 集群
前言:为什么自己要花时间写一篇redis集群文章,网上众多的文章大都是思路正确,但是细节不足,这里写一篇文章记录自己部署时候遇到的问题,当下次再部署的时候避免跳入重复的坑. 上篇文章(http://w ...
- jsp 页面获取当前路径
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...
- Farseer.net轻量级ORM开源框架 V1.x 入门篇:数据库配置文件
导航 目 录:Farseer.net轻量级ORM开源框架 目录 上一篇:Farseer.net轻量级ORM开源框架 V1.x 入门篇:新版本说明 下一篇:Farseer.net轻量级ORM开源框架 ...
- thinkphp5 404 file_put_contents 无法打开流:权限被拒绝
如果你用TP的时间比较长,或者说你比较了解TP的人都会知道,TP的runtime它需要的权限是很大的,如果你只给一般权限肯定是不行的,通常都是给runtime权限:777: linux命令如下: cd ...
- jQuery 全选、全不选、反选
<!DOCTYPE html> <html lang="en"> <head> <title></title> < ...
- Win10上 visual studio设置为本地IIS运行网站时 必须以管理员身份加载项目的解决方法
右键,选择“兼容性疑难解答”. 选择“疑难解答程序” 选择“该程序需要附加权限” 点击测试程序 点击下一步 选择 是,为此程序保存这些设置
- 第2节 mapreduce深入学习:8、手机流量汇总求和
第2节 mapreduce深入学习:8.手机流量汇总求和 例子:MapReduce综合练习之上网流量统计. 数据格式参见资料夹 需求一:统计求和 统计每个手机号的上行流量总和,下行流量总和,上行总流量 ...
- python 弹窗
import ctypes message = ctypes.windll.user32.MessageBoxA(0,'message','tips',0)
- NOIp模拟赛 西行妖下
题目描述: 给出一棵n个节点的树,每个点初始m值为1. 你有三种操作: 1.Add l r k ,将l到r路径上所有点m值加k. 2.Multi l r k ,将l到r路径上所有点m值乘k. 3.Qu ...
- c++基础_回文数
#include <iostream> using namespace std; int main(){ ;i<;i++){ ; int n=i;//暂存该四位数来计算 ,以防改变i ...