D. Felicity's Big Secret Revealed
 

The gym leaders were fascinated by the evolutions which took place at Felicity camp. So, they were curious to know about the secret behind evolving Pokemon.

The organizers of the camp gave the gym leaders a PokeBlock, a sequence of n ingredients. Each ingredient can be of type 0 or 1. Now the organizers told the gym leaders that to evolve a Pokemon of type k (k ≥ 2), they need to make a valid set of k cuts on the PokeBlock to get smaller blocks.

Suppose the given PokeBlock sequence is b0b1b2... bn - 1. You have a choice of making cuts at n + 1 places, i.e., Before b0, between b0 and b1, between b1 and b2, ..., between bn - 2 and bn - 1, and after bn - 1.

The n + 1 choices of making cuts are as follows (where a | denotes a possible cut):

b0 | b1 | b2 | ... | bn - 2 | bn - 1 |

Consider a sequence of k cuts. Now each pair of consecutive cuts will contain a binary string between them, formed from the ingredient types. The ingredients before the first cut and after the last cut are wasted, which is to say they are not considered. So there will be exactly k - 1 such binary substrings. Every substring can be read as a binary number. Let m be the maximum number out of the obtained numbers. If all the obtained numbers are positive and the set of the obtained numbers contains all integers from 1 to m, then this set of cuts is said to be a valid set of cuts.

For example, suppose the given PokeBlock sequence is 101101001110 and we made 5 cuts in the following way:

10 | 11 | 010 | 01 | 1 | 10

So the 4 binary substrings obtained are: 11, 010, 01 and 1, which correspond to the numbers 3, 2, 1 and 1 respectively. Here m = 3, as it is the maximum value among the obtained numbers. And all the obtained numbers are positive and we have obtained all integers from 1 to m. Hence this set of cuts is a valid set of 5 cuts.

A Pokemon of type k will evolve only if the PokeBlock is cut using a valid set of k cuts. There can be many valid sets of the same size. Two valid sets of k cuts are considered different if there is a cut in one set which is not there in the other set.

Let f(k) denote the number of valid sets of k cuts. Find the value of . Since the value of s can be very large, output smodulo 109 + 7.

Input

The input consists of two lines. The first line consists an integer n (1 ≤ n ≤ 75) — the length of the PokeBlock. The next line contains the PokeBlock, a binary string of length n.

Output

Output a single integer, containing the answer to the problem, i.e., the value of s modulo 109 + 7.

Examples
input
4
1011
output
10
 
Note

In the first sample, the sets of valid cuts are:

Size 2: |1|011, 1|01|1, 10|1|1, 101|1|.

Size 3: |1|01|1, |10|1|1, 10|1|1|, 1|01|1|.

Size 4: |10|1|1|, |1|01|1|.

Hence, f(2) = 4, f(3) = 4 and f(4) = 2. So, the value of s = 10.

In the second sample, the set of valid cuts is:

Size 2: |1|0.

Hence, f(2) = 1 and f(3) = 0. So, the value of s = 1.

题意:

  给定一个01串,一个有效的n切割定义如下:竖杠代表切割线,第一条竖杠前面的01串忽略,最后一条竖杠后面的01串忽略,将相邻竖杠夹住的01串转化成十进制数字

  假设这些数字的最大值是m且这些数字囊括了1-m的所有数字,则称为一次有效切割。

  问你方案数

题解:
  dp[i][j] 表示以i结尾的01串中所能涵括的数状态为j的方案
  那么 dp[k][j|(1<<(x-1))] += dp[i][j] (i+1 <= k <= n) x为i+1到k这串的十进制数
  暴力转移统计答案
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = +, M = 1e3+, mod = 1e9+, inf = 2e9;
int dp[N][(<<) + ];
int a[N],n;
char s[N];
int main() {
scanf("%d%s",&n,s+);
for(int i = ; i <= n; ++i) a[i] = s[i] - '';
for(int i = ; i <= n; ++i) {
dp[i][] = ;
for(int j = ; j < (<<); ++j) {
if(dp[i][j]) {
LL x = ;
for(int k = i+; k <= n; ++k) {
x += a[k];
if(x > ) break;
if(!x) continue;
dp[k][j|(<<(x-))] += dp[i][j];
dp[k][j|(<<(x-))] %= mod;
x *= ;
}
}
}
}
LL ans = ;
for(int i = ; i <= n; ++i) {
for(int j = ; j <= ; ++j) ans = (ans + dp[i][(<<j)-])%mod;
}
cout<<ans<<endl;
return ;
}

Codeforces 757 D. Felicity's Big Secret Revealed 状压DP的更多相关文章

  1. 【codeforces 757D】Felicity's Big Secret Revealed

    [题目链接]:http://codeforces.com/problemset/problem/757/D [题意] 给你一个01串; 让你分割这个01串; 要求2切..n+1切; 对于每一种切法 所 ...

  2. Codeforces Beta Round #8 C. Looking for Order 状压dp

    题目链接: http://codeforces.com/problemset/problem/8/C C. Looking for Order time limit per test:4 second ...

  3. Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】

    题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...

  4. Codeforces 1383C - String Transformation 2(找性质+状压 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进 ...

  5. Codeforces 744C Hongcow Buys a Deck of Cards 状压dp (看题解)

    Hongcow Buys a Deck of Cards 啊啊啊, 为什么我连这种垃圾dp都写不出来.. 不是应该10分钟就该秒掉的题吗.. 从dp想到暴力然后gg, 没有想到把省下的红色开成一维. ...

  6. 【Codeforces】CF 165 E Compatible Numbers(状压dp)

    题目 传送门:QWQ 分析 很难想到方向,但有方向了就很easy了. 我们如何减少不必要的计算? 如果我们知道了$ 100111 $的相容的数,$ 100101 $的相容数和他是完全一样的. 我们就靠 ...

  7. Codeforces Round #302 (Div. 1) C - Remembering Strings 状压dp

    C - Remembering Strings 思路:最关键的一点是字符的个数比串的个数多. 然后就能状压啦. #include<bits/stdc++.h> #define LL lon ...

  8. 【Codeforces】Gym 101173B Bipartite Blanket 霍尔定理+状压DP

    题意 给一张$n\times m$二分图,带点权,问有多少完美匹配子集满足权值和大于等于$t$ 这里有一个结论:对于二分图$\mathbb{A}$和$\mathbb{B}$集合,如果子集$A \in ...

  9. Codeforces Round #585 (Div. 2) E. Marbles (状压DP)

    题目:https://codeforc.es/contest/1215/problem/E 题意:给你一个序列,你可以交换相邻的两个数,要达到一个要求,所有相同的数都相邻,问你交换次数最少是多少 思路 ...

随机推荐

  1. 几个非常实用的JQuery代码片段

    jQuery是一个兼容多浏览器的javascript库,核心理念是write less,do more(写得更少,做得更多).jQuery使用户能更方便地处理HTML(标准通用标记语言下的一个应用). ...

  2. js中表格的相关操作

    tHead:表头 tBodies:表格正文 tFoot:表格尾 rows:行 cells:列 表格的应用: 1.获取 2.表格创建 3.隔行变色 4.删除一行 <!DOCTYPE html> ...

  3. python-列表数据类型内置方法

    1 列表数据类型(必考) 1.1 用途:兴趣爱好,多个女朋友 1.2 定义方式:[]内用逗号隔开多个元素,多个元素可以是任意数据类型 fangping_boy_friend_list=['ruixin ...

  4. 【HIHOCODER 1048】 状态压缩·二

    描述 历经千辛万苦,小Hi和小Ho终于到达了举办美食节的城市!虽然人山人海,但小Hi和小Ho仍然抑制不住兴奋之情,他们放下行李便投入到了美食节的活动当中.美食节的各个摊位上各自有着非常多的有意思的小游 ...

  5. Tomcat启动慢(运行shutdown.sh的时候报错)

    Using CATALINA_BASE: /usr/local/tomcatUsing CATALINA_HOME: /usr/local/tomcatUsing CATALINA_TMPDIR: / ...

  6. Leetcode 260.只出现一次的数字III

    只出现一次的数字III 给定一个整数数组 nums,其中恰好有两个元素只出现一次,其余所有元素均出现两次. 找出只出现一次的那两个元素. 示例 : 输入: [1,2,1,3,2,5] 输出: [3,5 ...

  7. CF651B-Beautiful Paintings

    B. Beautiful Paintings time limit per test 1 second memory limit per test 256 megabytes input standa ...

  8. Windows的Java_HOME环境变更配置

    Windows的Java_HOME环境变更配置 一般会配置三个环境变更: 1.系统变量 变量名JAVA_HOME  变量值=安装目录,如:C:\Program Files (x86)\Java\jdk ...

  9. centos7 网络设置

    1.显示所有连接的网络接口 ip link show 2.激活或禁止网络接口 sudo ip link set up/down {dev} 3.将一个或多个IPv4地址分配给网络接口$ sudo ip ...

  10. 牛客网 牛客网暑期ACM多校训练营(第三场)E KMP

    链接:https://www.nowcoder.com/acm/contest/141/E 题目描述 Eddy likes to play with string which is a sequenc ...