D. Felicity's Big Secret Revealed
 

The gym leaders were fascinated by the evolutions which took place at Felicity camp. So, they were curious to know about the secret behind evolving Pokemon.

The organizers of the camp gave the gym leaders a PokeBlock, a sequence of n ingredients. Each ingredient can be of type 0 or 1. Now the organizers told the gym leaders that to evolve a Pokemon of type k (k ≥ 2), they need to make a valid set of k cuts on the PokeBlock to get smaller blocks.

Suppose the given PokeBlock sequence is b0b1b2... bn - 1. You have a choice of making cuts at n + 1 places, i.e., Before b0, between b0 and b1, between b1 and b2, ..., between bn - 2 and bn - 1, and after bn - 1.

The n + 1 choices of making cuts are as follows (where a | denotes a possible cut):

b0 | b1 | b2 | ... | bn - 2 | bn - 1 |

Consider a sequence of k cuts. Now each pair of consecutive cuts will contain a binary string between them, formed from the ingredient types. The ingredients before the first cut and after the last cut are wasted, which is to say they are not considered. So there will be exactly k - 1 such binary substrings. Every substring can be read as a binary number. Let m be the maximum number out of the obtained numbers. If all the obtained numbers are positive and the set of the obtained numbers contains all integers from 1 to m, then this set of cuts is said to be a valid set of cuts.

For example, suppose the given PokeBlock sequence is 101101001110 and we made 5 cuts in the following way:

10 | 11 | 010 | 01 | 1 | 10

So the 4 binary substrings obtained are: 11, 010, 01 and 1, which correspond to the numbers 3, 2, 1 and 1 respectively. Here m = 3, as it is the maximum value among the obtained numbers. And all the obtained numbers are positive and we have obtained all integers from 1 to m. Hence this set of cuts is a valid set of 5 cuts.

A Pokemon of type k will evolve only if the PokeBlock is cut using a valid set of k cuts. There can be many valid sets of the same size. Two valid sets of k cuts are considered different if there is a cut in one set which is not there in the other set.

Let f(k) denote the number of valid sets of k cuts. Find the value of . Since the value of s can be very large, output smodulo 109 + 7.

Input

The input consists of two lines. The first line consists an integer n (1 ≤ n ≤ 75) — the length of the PokeBlock. The next line contains the PokeBlock, a binary string of length n.

Output

Output a single integer, containing the answer to the problem, i.e., the value of s modulo 109 + 7.

Examples
input
4
1011
output
10
 
Note

In the first sample, the sets of valid cuts are:

Size 2: |1|011, 1|01|1, 10|1|1, 101|1|.

Size 3: |1|01|1, |10|1|1, 10|1|1|, 1|01|1|.

Size 4: |10|1|1|, |1|01|1|.

Hence, f(2) = 4, f(3) = 4 and f(4) = 2. So, the value of s = 10.

In the second sample, the set of valid cuts is:

Size 2: |1|0.

Hence, f(2) = 1 and f(3) = 0. So, the value of s = 1.

题意:

  给定一个01串,一个有效的n切割定义如下:竖杠代表切割线,第一条竖杠前面的01串忽略,最后一条竖杠后面的01串忽略,将相邻竖杠夹住的01串转化成十进制数字

  假设这些数字的最大值是m且这些数字囊括了1-m的所有数字,则称为一次有效切割。

  问你方案数

题解:
  dp[i][j] 表示以i结尾的01串中所能涵括的数状态为j的方案
  那么 dp[k][j|(1<<(x-1))] += dp[i][j] (i+1 <= k <= n) x为i+1到k这串的十进制数
  暴力转移统计答案
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = +, M = 1e3+, mod = 1e9+, inf = 2e9;
int dp[N][(<<) + ];
int a[N],n;
char s[N];
int main() {
scanf("%d%s",&n,s+);
for(int i = ; i <= n; ++i) a[i] = s[i] - '';
for(int i = ; i <= n; ++i) {
dp[i][] = ;
for(int j = ; j < (<<); ++j) {
if(dp[i][j]) {
LL x = ;
for(int k = i+; k <= n; ++k) {
x += a[k];
if(x > ) break;
if(!x) continue;
dp[k][j|(<<(x-))] += dp[i][j];
dp[k][j|(<<(x-))] %= mod;
x *= ;
}
}
}
}
LL ans = ;
for(int i = ; i <= n; ++i) {
for(int j = ; j <= ; ++j) ans = (ans + dp[i][(<<j)-])%mod;
}
cout<<ans<<endl;
return ;
}

Codeforces 757 D. Felicity's Big Secret Revealed 状压DP的更多相关文章

  1. 【codeforces 757D】Felicity's Big Secret Revealed

    [题目链接]:http://codeforces.com/problemset/problem/757/D [题意] 给你一个01串; 让你分割这个01串; 要求2切..n+1切; 对于每一种切法 所 ...

  2. Codeforces Beta Round #8 C. Looking for Order 状压dp

    题目链接: http://codeforces.com/problemset/problem/8/C C. Looking for Order time limit per test:4 second ...

  3. Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】

    题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...

  4. Codeforces 1383C - String Transformation 2(找性质+状压 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进 ...

  5. Codeforces 744C Hongcow Buys a Deck of Cards 状压dp (看题解)

    Hongcow Buys a Deck of Cards 啊啊啊, 为什么我连这种垃圾dp都写不出来.. 不是应该10分钟就该秒掉的题吗.. 从dp想到暴力然后gg, 没有想到把省下的红色开成一维. ...

  6. 【Codeforces】CF 165 E Compatible Numbers(状压dp)

    题目 传送门:QWQ 分析 很难想到方向,但有方向了就很easy了. 我们如何减少不必要的计算? 如果我们知道了$ 100111 $的相容的数,$ 100101 $的相容数和他是完全一样的. 我们就靠 ...

  7. Codeforces Round #302 (Div. 1) C - Remembering Strings 状压dp

    C - Remembering Strings 思路:最关键的一点是字符的个数比串的个数多. 然后就能状压啦. #include<bits/stdc++.h> #define LL lon ...

  8. 【Codeforces】Gym 101173B Bipartite Blanket 霍尔定理+状压DP

    题意 给一张$n\times m$二分图,带点权,问有多少完美匹配子集满足权值和大于等于$t$ 这里有一个结论:对于二分图$\mathbb{A}$和$\mathbb{B}$集合,如果子集$A \in ...

  9. Codeforces Round #585 (Div. 2) E. Marbles (状压DP)

    题目:https://codeforc.es/contest/1215/problem/E 题意:给你一个序列,你可以交换相邻的两个数,要达到一个要求,所有相同的数都相邻,问你交换次数最少是多少 思路 ...

随机推荐

  1. Python-接口自动化(十一)

    配置文件的作用(十一) (十二)配置文件 1.python当中有一个模块可以读取配置文件里面的信息:configparser,对这个模块进行导入之后就可以使用了,import configparser ...

  2. 数据结构实验6:C++实现二叉树类

    实验6 学号:     姓名:      专业:   6.1 实验目的 掌握二叉树的动态链表存储结构及表示. 掌握二叉树的三种遍历算法(递归和非递归两类). 运用二叉树三种遍历的方法求解有关问题. 6 ...

  3. python基础——2(基本数据类型及运算符)

    目录 为何数据要区分类型? 一.数字类型 1.整型int 2.浮点型float 二.字符串str 三.列表类型list 四.字典类型 五.布尔类型 运算符的介绍 一.算术运算符 二.比较运算符 三.赋 ...

  4. JavaScript高级程序设计中第2、3章中细节知识点

    第2章 1.<script src='script.js' type='text/javascript'></script>中,只要不包含defer和async属性,浏览器都会 ...

  5. 跟初学者学习IbatisNet第一篇

    写在前面的话:我自己也是一个初学者,写这个专题只是为了对学过知识的巩固,如果有什么不对的地方,欢迎大家指正…………………… 第一篇就简单介绍一下什么是IbatisNet,然后写一个简单的Demo,在后 ...

  6. Action中result的各种转发类型

    Action中result的各种转发类型 1,dispatcher:默认值 ,内部定向 <result>/WEB-INF/page/employeeAdd.jsp</result&g ...

  7. [HDU2896]病毒侵袭(AC自动机)

    传送门 题目中文描述,赞! 除了val记录id以外就是模板. 注意:每次数组都要清0.0 ——代码 #include <cstdio> #include <queue> #in ...

  8. [NOIP2002] 提高组P1032 字串变换

    题目描述 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A$中的子串 A1 可以变换为 B1.A2 可以变换为 B ...

  9. Reactor和Proactor模式的讲解(关于异步,同步,阻塞与非阻塞)

    在高性能的I/O设计中,有两个比较著名的模式Reactor和Proactor模式,其中Reactor模式用于同步I/O,而Proactor运用于异步I/O操作. 在比较这两个模式之前,我们首先的搞明白 ...

  10. django学习之- Ajax

    提示:jquery要使用1版本,因为高版本已不兼容低版本的游览器.参考url:http://www.cnblogs.com/wupeiqi/articles/5703697.html原生ajax:Aj ...