做完题目很少有写题解的习惯,强行PO一组吧。

比赛链接:https://www.codechef.com/LOCAUG17

PRINCESS

给定字符串s,问s是否存在长度大于1的回文子串。

解:分两种情况。设n=|s|。

1. 存在回文子串长度为奇数。则存在2<=i<n,使得s[i-1]==s[i+1]。

2. 存在回文子串长度为偶数。则存在1<=i<n,使得s[i]==s[i+1]。

时间复杂度O(n)。

代码在这里

ALATE

给定长度为n的数组a[1..n]。维护两种操作:

1. 给定x,求$\sum_{x|i} a[i]$。

2. 给定x和y,把a[x]改为y。

解:维护ans[x] = $\sum_{x|i} a[i]$。

0. 暴力预处理得到ans[]的初值。

1. 对于操作1,直接输出ans[x]。

2. 对于操作2,枚举所有d|x,更改ans[d]。

时间复杂度$O(n\log n+n \max\limits_{1 \le k \le 100,000} \sigma(k))$,其中$\sigma(k)$表示k的因子个数。

代码在这里

ALTSUB

给定长度为n的数组a[1..n]。维护两种操作:

1. 给定x和y,把a[x]改为y。

2. 给定L和R,求a[L], a[L+1], ..., a[R]的所有子序列的交错和的平方之和。

一个序列a[1], a[2], ..., a[n]的交错和定义为$\sum_{i=1}^n (-1)^{i-1} a[i]$。

解:考虑使用线段树。

每个区间维护6个信息:

cnt0 - 这段区间中长度为偶数的子序列个数。

cnt1 - 这段区间中长度为奇数的子序列个数。

sum0 - 这段区间中长度为偶数的子序列的交错和之和。

sum1 - 这段区间中长度为奇数的子序列的交错和之和。

sum20 - 这段区间中长度为偶数的子序列的交错和的平方之和。

sum21 - 这段区间中长度为奇数的子序列的交错和的平方之和。

具体更新信息如下:

void update(node *tree, int k)
{
tree[k].cnt0 = (tree[k<<].cnt0*tree[k<<|].cnt0+tree[k<<].cnt1*tree[k<<|].cnt1)%MOD;
tree[k].cnt1 = (tree[k<<].cnt0*tree[k<<|].cnt1+tree[k<<].cnt1*tree[k<<|].cnt0)%MOD;
tree[k].sum0 = (tree[k<<|].cnt0*tree[k<<].sum0+tree[k<<].cnt0*tree[k<<|].sum0+tree[k<<|].cnt1*tree[k<<].sum1-tree[k<<].cnt1*tree[k<<|].sum1)%MOD;
tree[k].sum1 = (tree[k<<|].cnt0*tree[k<<].sum1-tree[k<<].cnt1*tree[k<<|].sum0+tree[k<<|].cnt1*tree[k<<].sum0+tree[k<<].cnt0*tree[k<<|].sum1)%MOD;
tree[k].sum20 =(tree[k<<|].cnt0*tree[k<<].sum20+tree[k<<].cnt0*tree[k<<|].sum20+*tree[k<<].sum0*tree[k<<|].sum0
+ tree[k<<|].cnt1*tree[k<<].sum21+tree[k<<].cnt1*tree[k<<|].sum21-*tree[k<<].sum1*tree[k<<|].sum1)%MOD;
tree[k].sum21 =(tree[k<<|].cnt1*tree[k<<].sum20+tree[k<<].cnt0*tree[k<<|].sum21+*tree[k<<].sum0*tree[k<<|].sum1
+ tree[k<<|].cnt0*tree[k<<].sum21+tree[k<<].cnt1*tree[k<<|].sum20-*tree[k<<].sum1*tree[k<<|].sum0)%MOD;
}

时间复杂度O(n+mlogn)。

代码在这里

GTREE

给定一棵n个节点,并以1为根的树,其每个点x有权值a[x]。

对于每个节点x,问其子树中的所有节点中(不包括节点x本身),有多少个节点y满足 $\gcd (a[x], a[y]) > 1$。

解:先考虑这样一个问题:

【假设给定若干个数字,并且数字x出现c[x]次。问有多少个数字与m的最大公约数大于1。】

由Mobius反演可得

$$\sum_{i=1}^n c_i [\gcd (i, m) = 1] = \sum_{d|m} \mu(d) \sum_{i=1}^{\lfloor n/d \rfloor} c_{id}.$$

我们可以利用一些dfs的技巧,在dfs整棵树的同时,对每个节点x,以及每个d|a[x],O(1)地求得$\sum_{i=1}^{\lfloor n/d \rfloor} c_{id}$。

于是,时间复杂度是$O(n \max\limits_{1 \le k \le 100,000} \sigma(k))$,其中$\sigma(k)$表示k的因子个数。

代码在这里

KMAX

给定数组a[1], a[2], ..., a[n],以及k<=n。其中k<=100,n<=100000。

令f(i, j)表示子数组a[i], a[i+1], ..., a[j]的前k大值之和(如果不足k个就全取)。

求$\sum_{i=1}^n \sum_{j=i}^n f(i, j)$。

解:从小到大枚举a[x]的位置x,我们统计位于位置x的a[x]可以对多少个子数组的f(i, j)有贡献。

于是我们只需求得在位置x之前,大于a[x]的最近k个位置;以及在位置x之后,大于a[x]的最近k个位置。(可以利用线段树等求得,也可以利用并查集来做。)

统计所有求和即可。

时间复杂度O(nklogn)。

代码在这里

Codechef LOCAUG17的更多相关文章

  1. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  2. 【BZOJ4260】 Codechef REBXOR 可持久化Trie

    看到异或就去想前缀和(⊙o⊙) 这个就是正反做一遍最大异或和更新答案 最大异或就是很经典的可持久化Trie,从高到低贪心 WA: val&(1<<(base-1))得到的并不直接是 ...

  3. codechef 两题

    前面做了这场比赛,感觉题目不错,放上来. A题目:对于数组A[],求A[U]&A[V]的最大值,因为数据弱,很多人直接排序再俩俩比较就过了. 其实这道题类似百度之星资格赛第三题XOR SUM, ...

  4. codechef January Challenge 2014 Sereja and Graph

    题目链接:http://www.codechef.com/JAN14/problems/SEAGRP [题意] 给n个点,m条边的无向图,判断是否有一种删边方案使得每个点的度恰好为1. [分析] 从结 ...

  5. BZOJ3509: [CodeChef] COUNTARI

    3509: [CodeChef] COUNTARI Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 339  Solved: 85[Submit][St ...

  6. CodeChef CBAL

    题面: https://www.codechef.com/problems/CBAL 题解: 可以发现,我们关心的仅仅是每个字符出现次数的奇偶性,而且字符集大小仅有 26, 所以我们状态压缩,记 a[ ...

  7. CodeChef FNCS

    题面:https://www.codechef.com/problems/FNCS 题解: 我们考虑对 n 个函数进行分块,设块的大小为S. 每个块内我们维护当前其所有函数值的和,以及数组中每个元素对 ...

  8. codechef Prime Distance On Tree(树分治+FFT)

    题目链接:http://www.codechef.com/problems/PRIMEDST/ 题意:给出一棵树,边长度都是1.每次任意取出两个点(u,v),他们之间的长度为素数的概率为多大? 树分治 ...

  9. BZOJ 3221: [Codechef FEB13] Obserbing the tree树上询问( 可持久化线段树 + 树链剖分 )

    树链剖分+可持久化线段树....这个一眼可以看出来, 因为可持久化所以写了标记永久化(否则就是区间修改的线段树的持久化..不会), 结果就写挂了, T得飞起...和管理员拿数据调后才发现= = 做法: ...

随机推荐

  1. 常见的哈希Hash算法 & MD5 & 对称非对称加密 & 海明码

    参考 Link 另外,这篇文章也提到了利用Hash碰撞而产生DOS攻击的案例: http://www.cnblogs.com/charlesblc/p/5990475.html DJB的算法实现核心是 ...

  2. [转】 nginx rewrite规则

    http://www.cnblogs.com/cgli/archive/2011/05/16/2047920.html 最近在VPS上尝试配置安装一个网站,VPS安装了LNMP(Linux+Nginx ...

  3. 安卓自带下拉刷新SwipeRefreshLayout加入上拉刷新功能

    在项目里面要用到刷新库.曾经都是使用第三方的.只是看到官方出了  SwipeRefreshLayout之后就用SwipeRefreshLayout.可是不知道什么原因官方SwipeRefreshL ...

  4. 进程监控模块配置与使用 ------ACE(开源项目)

    下面我先从此工程的作用讲起: 此工程适用于程序异常退出,然后自动重启该程序.对于,系统重启不了该进程,那此程序将返回-1,也无法进行下一步工作. 下面,先从配置开始讲起: 参考资料:http://hi ...

  5. SQL模糊查询碰到空值怎么办?

    作者:iamlaosong SQL查询语句用%来做模糊查询.程序中一般要求用户输入部分信息,依据这个信息进行模糊查询. 比如用户输入340104,以下这条语句就是查询昨天客户代码为340104开头的全 ...

  6. 【转载】FAT12文件系统之引导扇区结构

    FAT12文件系统之引导扇区结构 文件系统即文件管理系统,是操作系统的重要组成部分之一,如果需要开发底层磁盘驱动或编写自己的操作系统,就必须详细了解文件系统. FAT12是Microsoft公司DOS ...

  7. dubbo配置指南

    dubbo配置指南 SLA配置在此完成!Service Layer Agreement ApplicationConfig 应用配置,用于配置当前应用信息,不管该应用是提供者还是消费者. Regist ...

  8. 小程序多级下拉菜单demo

    小程序多级下拉菜单demo - CSDN博客 https://blog.csdn.net/github_39371177/article/details/80251211

  9. hdfs 3种 通讯协议

    http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_design.html 通讯协议 所有的HDFS通讯协议都是建立在TCP/IP协议之上.客户端通过一个可配置的 ...

  10. 单字节的FIFO缓存(30天自制操作系统--读书笔记)

    从今天起,写一些读书笔记.最近几个月都在看<30天自制操作系统这本书>,书虽说看的是电子书,但可以花钱买的正版书,既然花费了金钱,就总得有些收获. 任何人都不能总是固步自封,想要进步就得学 ...