【Aizu - 0005 】GCD and LCM
GCD and LCM
Descriptions:
Write a program which computes the greatest common divisor (GCD) and the least common multiple (LCM) of given a and b.
Input
Input consists of several data sets. Each data set contains a and b separated by a single space in a line. The input terminates with EOF.
Constraints
- 0 < a, b ≤ 2,000,000,000
- LCM(a, b) ≤ 2,000,000,000
- The number of data sets ≤ 50
Output
For each data set, print GCD and LCM separated by a single space in a line.
Sample Input
8 6
50000000 30000000
Output for the Sample Input
2 24
10000000 150000000
题目链接:
https://vjudge.net/problem/Aizu-0005
多组输入,就是求这两个数的gcd(最大公约数)和lcm(最小公倍数)
注意数据有点大,保险起见用long long吧
AC代码
#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <numeric>
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){
if(b==)
return a;
return gcd(b,a%b); //递归求最大公约数
}
ll lcm(ll a,ll b){
return a/gcd(a,b)*b; //递归求最小公倍数
}
int main()
{
ll a,b;
while(cin >> a >> b)
{
cout << gcd(a,b)<< " "<<lcm(a,b)<<endl;
}
return ;
}
【Aizu - 0005 】GCD and LCM的更多相关文章
- 【51nod 2026】Gcd and Lcm
题目 已知 \(f(x)=\sum_{d|x}μ(d)∗d\) 现在请求出下面式子的值 \(\sum_{i=1}^{n}\sum_{j=1}^{n}f(gcd(i,j))∗f(lcm(i,j))\) ...
- 【CF#338D】GCD Table
[题目描述] 有一张N,M<=10^12的表格,i行j列的元素是gcd(i,j) 读入一个长度不超过10^4,元素不超过10^12的序列a[1..k],问是否在某一行中出现过 [题解] 要保证g ...
- 【BZOJ 2818】 GCD
[题目链接] 点击打开链接 [算法] 线性筛出不大于N的所有素数,枚举gcd(x,y)(设为p),问题转化为求(x,y)=p的个数 设x=x'p, y=y'p,那么有(x,y)=1且 ...
- 【Codeforces 582A】 GCD Table
[题目链接] 点击打开链接 [算法] G中最大的数一定也是a中最大的数. G中次大的数一定也是a中次大的数. 第三.第四可能是由最大和次大的gcd产生的 那么就不难想到下面的算法: ...
- 【HDU 5382】 GCD?LCM! (数论、积性函数)
GCD?LCM! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...
- 【51nod2026】Gcd and Lcm(杜教筛)
题目传送门:51nod 我们可以先观察一下这个$f(x)=\sum_{d|x}\mu(d) \cdot d$. 首先它是个积性函数,并且$f(p^k)=1-p \ (k>0)$,这说明函数$f( ...
- 【poj 2429】GCD & LCM Inverse (Miller-Rabin素数测试和Pollard_Rho_因数分解)
本题涉及的算法个人无法完全理解,在此提供两个比较好的参考. 原理 (后来又看了一下,其实这篇文章问题还是有的……有时间再搜集一下资料) 代码实现 #include <algorithm> ...
- 【Codeforces 582A】GCD Table
[链接] 我是链接,点我呀:) [题意] 给你一个数组A[]经过a[i][j] = gcd(A[i],A[j])的规则生成的二维数组 让你求出原数组A [题解] 我们假设原数组是A 然后让A数组满足A ...
- 【UVA 11426】gcd之和 (改编)
题面 \(\sum_{i=1}^{n}\sum_{j=1}^m\gcd(i,j)\mod998244353\) \(n,m<=10^7\) Sol 简单的一道莫比乌斯反演题 \(原式=\sum_ ...
随机推荐
- HDU 1402 大数乘法 FFT、NTT
A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- [转] SQL SERVER 2008 R2 安装中的账户设置问题
故纸堆 原文:SQL SERVER 2008安装中设置账户的问题,2013-7 在安装SQL Server 2008数据库服务器的时候,服务器有可能处于以下几种环境中: ①工作组环境下的服务器 (Wo ...
- Go --- 设计模式(工厂模式)
简易工厂主要是用来解决对象“创建”的问题.以下的例子取自<大话设计模式>中第一章,实现一个可扩展的“计算器”.当增加新的功能时,并不需改动原来已经实现的算法.由于是简易工厂,所以我们还是需 ...
- CheckStyle: 解决Unicode导致LineLength出错的问题
在checkstyle.xml中,加上如下代码: <?xml version="1.0" encoding="UTF-8"?> <module ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- matlab 画图技巧
基本画图工具:matlab 画图中线型及颜色设置 matlab中坐标轴设置技巧 **Matlab中的坐标轴设置技巧** axisoff; %去掉坐标轴 axistight; ...
- maven 的编译插件的配置
原文: https://stackoverflow.com/questions/29258141/maven-compilation-error-use-source-7-or-higher-to-e ...
- Angular团队公布路线图,并演示怎样与React Native集成
本文来源于我在InfoQ中文站翻译的文章,原文地址是:http://www.infoq.com/cn/news/2015/06/angular-2-react-native-roadmap 前不久在旧 ...
- composer-安装插件包
上一步完成后,选定国内镜像地址,以为下载插件包做准备 https://pkg.phpcomposer.com/ 安装完componser后使用下面这条命令即可(设置国内镜像地址): composer ...
- 【剑指offer】数组中仅仅出现一次的数字(1)
转载请注明出处:http://blog.csdn.net/ns_code/article/details/27649027 题目描写叙述: 一个整型数组里除了两个数字之外.其它的数字都出现了两次. 请 ...