Description

Transmission Gate

你需要维护一个长度为\(n \leq 300000\) 的数列,兹词两个操作:

1.给一个区间加上一个fibonacci数列,规定\(f[0] = 0, f[1] = 1, f[2] = 1\)

2.查询一段区间的和。对1e9+9取模

操作个数m不超过300000.

Solution

​ 这一题其实要考虑Fibonacci数列的两个性质:

​ (i)\(\sum_{i = 1}^{n} fib(i) = f(n + 2) - 1\)

​ (ii)令\(S_i = S_{i - 1} + S_{i - 2}\), 其中\(S_1 = a, S_2 = b\)

​ 那么\(S_i = aFib(i - 1) + bFib(i - 2)\)

​ 那么就很好做了, 在线段树中, 我们要只要记数列的前两项就可以方便的对数列进行求和,pushdown等操作.

​ 这题细节比较多,相关部分见代码。

Code

#include<bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define drep(i, a, b) for(int i = (a), i##_end_ = (b); i >= i##_end_; --i)
#define clar(a, b) memset((a), (b), sizeof(a))
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define Debug(s) debug("The massage in line %d, Function %s: %s\n", __LINE__, __FUNCTION__, s)
typedef long long LL;
typedef long double LD;
const int BUF_SIZE = (int)1e6 + 10;
struct fastIO {
char buf[BUF_SIZE], buf1[BUF_SIZE];
int cur, cur1;
FILE *in, *out;
fastIO() {
cur = BUF_SIZE, in = stdin, out = stdout;
cur1 = 0;
}
inline char getchar() {
if(cur == BUF_SIZE) fread(buf, BUF_SIZE, 1, in), cur = 0;
return *(buf + (cur++));
}
inline void putchar(char ch) {
*(buf1 + (cur1++)) = ch;
if (cur1 == BUF_SIZE) fwrite(buf1, BUF_SIZE, 1, out), cur1 = 0;
}
inline int flush() {
if (cur1 > 0) fwrite(buf1, cur1, 1, out);
return cur1 = 0;
}
}IO;
#define getchar IO.getchar
#define putchar IO.putchar
int read() {
char ch = getchar();
int x = 0, flag = 1;
for(;!isdigit(ch); ch = getchar()) if(ch == '-') flag *= -1;
for(;isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
return x * flag;
}
void write(int x) {
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar(x % 10 + 48);
}
void putString(char s[], char EndChar = '\n') {
rep(i, 0, strlen(s) - 1) putchar(*(s + i));
if(~EndChar) putchar(EndChar);
} #define Maxn 300009
const LL Mod = 1000000009;
int n, a[Maxn], m; LL f[Maxn];
struct node { LL x, y; };
LL FibDelta(LL F1, LL F2, LL len) {
LL res = 0;
if(len >= 1) (res += F1) %= Mod;
if(len >= 2) (res += F2) %= Mod;
if(len >= 3) (res += (F2 * (f[len + 1] - 2ll) % Mod + F1 * (f[len] - 1ll) % Mod) % Mod) %= Mod;
return res;
}// It needs to analysis in different conditions
node FibForward(node s, int len) {
LL c = s.x * f[len] % Mod + s.y * f[len + 1] % Mod, d = s.x * f[len + 1] % Mod + s.y * f[len + 2] % Mod;
return (node){c % Mod, d % Mod};
}
namespace SGMT_tree {
LL tree[Maxn << 2], beg[Maxn << 2][2], val[Maxn << 2];
#define lc(x) (x) << 1
#define rc(x) (x) << 1 | 1
#define ls rt << 1, l, mid
#define rs rt << 1 | 1, mid + 1, r
void pushup(int rt) { tree[rt] = (1ll * tree[lc(rt)] + 1ll * tree[rc(rt)]) % Mod; }
void pushdown(int rt, int l, int r) {
int mid = (l + r) >> 1;
if(val[rt]) {
LL &a = beg[rt][0], &b = beg[rt][1];
(beg[lc(rt)][0] += a) %= Mod, (beg[lc(rt)][1] += b) %= Mod;
(tree[lc(rt)] += FibDelta(a, b, mid - l + 1)) %= Mod;
val[lc(rt)] = 1; LL c = a * f[mid - l] + b * f[mid - l + 1], d = a * f[mid - l + 1] + b * f[mid - l + 2];
c %= Mod, d %= Mod;
(beg[rc(rt)][0] += c) %= Mod, (beg[rc(rt)][1] += d) %= Mod;
(tree[rc(rt)] += FibDelta(c, d, r - mid)) %= Mod;
val[rc(rt)] = 1;
beg[rt][0] = beg[rt][1] = 0;
val[rt] = 0;
}
}
void build(int rt, int l, int r) {
if(l == r) {
tree[rt] = a[l];
return ;
}
int mid = (l + r) >> 1;
build(ls), build(rs);
pushup(rt);
}
void modify(int rt, int l, int r, int x, int y, int p1, int p2) {
if(x <= l && r <= y) {
(beg[rt][0] += p1) %= Mod, (beg[rt][1] += p2) %= Mod;
(tree[rt] += FibDelta(p1, p2, r - l + 1)) %= Mod;
val[rt] = 1;
return ;
} int mid = (l + r) >> 1;
pushdown(rt, l, r); if(y <= mid) modify(ls, x, y, p1, p2);
else if(mid + 1 <= x) modify(rs, x, y, p1, p2);
else {
modify(ls, x, mid, p1, p2); /**/
node z = FibForward((node){p1, p2}, mid - x);/**/
//F[i] -> F[i + mid - x]: p1 -> z.x, p2 -> z.y
modify(rs, mid + 1, y, z.x, z.y);/*The InterVal needs to move*/
}
pushup(rt);
}
int query(int rt, int l, int r, int x, int y) {
if(x <= l && r <= y) return tree[rt]; int mid = (l + r) >> 1; pushdown(rt, l, r); if(y <= mid) return query(ls, x, y);
else if(mid + 1 <= x) return query(rs, x, y);
else return (1ll * query(ls, x, y) + 1ll * query(rs, x, y)) % Mod;
}
#undef lc
#undef rc
#undef ls
#undef rs
}
namespace INIT {
void Main() {
n = read(), m = read(); f[1] = 1; f[2] = 1;
rep(i, 3, n + 4) f[i] = (f[i - 1] * 1ll + f[i - 2]) % Mod; rep(i, 1, n) a[i] = read(); SGMT_tree :: build(1, 1, n);
}
}
namespace SOLVE {
void Main() {
rep(i, 1, m) {
int opt = read(); if(opt == 1) {
int x = read(), y = read();
SGMT_tree :: modify(1, 1, n, x, y, 1, 1);
}
if(opt == 2) {
int x = read(), y = read();
write(SGMT_tree :: query(1, 1, n, x, y)), putchar('\n');
}
}
}
}
int main() {
freopen("CF446C.in", "r", stdin);
freopen("CF446C.out", "w", stdout); INIT :: Main();
SOLVE :: Main();
#ifdef Qrsikno
debug("\nRunning time: %.3lf(s)\n", clock() * 1.0 / CLOCKS_PER_SEC);
#endif
return IO.flush();
}

CF446C [DZY loves Fibonacci]的更多相关文章

  1. cf446C DZY Loves Fibonacci Numbers

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  2. 【思维题 线段树】cf446C. DZY Loves Fibonacci Numbers

    我这种maintain写法好zz.考试时获得了40pts的RE好成绩 In mathematical terms, the sequence Fn of Fibonacci numbers is de ...

  3. CF446C DZY Loves Fibonacci Numbers 线段树 + 数学

    有两个性质需要知道: $1.$ 对于任意的 $f[i]=f[i-1]+f[i-2]$ 的数列,都有 $f[i]=fib[i-2]\times f[1]+fib[i-1]\times f[2]$ 其中 ...

  4. 「CF446C」 DZY Loves Fibonacci Numbers

    「CF446C」 DZY Loves Fibonacci Numbers 这里提供一种优美的根号分治做法. 首先,我们考虑一种不太一样的暴力.对于一个区间加斐波那契数的操作 \([a,b]\),以及一 ...

  5. codeforces 446C DZY Loves Fibonacci Numbers(数学 or 数论+线段树)(两种方法)

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 ...

  6. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  7. Codeforces Round #FF 446 C. DZY Loves Fibonacci Numbers

    參考:http://www.cnblogs.com/chanme/p/3843859.html 然后我看到在别人的AC的方法里还有这么一种神方法,他预先设定了一个阈值K,当当前的更新操作数j<K ...

  8. Codeforces446C - DZY Loves Fibonacci Numbers

    Portal Description 给出一个\(n(n\leq3\times10^5)\)个数的序列,进行\(m(m\leq3\times10^5)\)次操作,操作有两种: 给区间\([L,R]\) ...

  9. [CodeForces - 447E] E - DZY Loves Fibonacci Numbers

    E  DZY Loves Fibonacci Numbers In mathematical terms, the sequence Fn of Fibonacci numbers is define ...

随机推荐

  1. 《gis空间分析及应用案例解析》培训总结

    <gis空间分析及应用案例解析>培训总结 来源:常德水情 作者:唐校准 发布日期:2014-01-02       2013年12月2630日由中国科学院计算技术研究所教育中心组织的< ...

  2. zerorpc使用时报错:No handlers could be found for logger "zerorpc.channel"

    问题如题:安装方法参考 http://www.cnblogs.com/shengulong/p/7887586.html ,安装完后,使用时出现如题的错误 解决办法: 1.zerorpc本身依赖很多三 ...

  3. OSX: 第三方部署Profile的方法和比較

    眼下至少有三个第三方部署Profile的方法. 一个Profile Handler, 是利用Launchd对制定文件夹改变而激活的机制,把须要的profiles文件斗存放在制定目标机器的文件夹内,系统 ...

  4. Vs2017添加引用时报错 未能正确加载“ReferenceManagerPackage”包。

    Vs2017添加引用时报错未能正确加载“ReferenceManagerPackage”包. 最近新装了2017,开始前几天还好, 可是最近在添加引用时,报错 -------------------- ...

  5. 【Jquery】jQuery获取URL參数的两种方法

    jQuery获取URL參数的关键是获取到URL,然后对URL进行过滤处理,取出參数. location.href是取得URL.location.search是取得URL"?"之后的 ...

  6. jquery获取input值的各种情况

    jQuery获取多种input值的方法 获取input的checked值是否为true: 第一种: if($("input[name=item][value='val']").at ...

  7. A + B Problem II(杭电1002)

    /*A + B Problem II Problem Description I have a very simple problem for you. Given two integers A an ...

  8. 2016/2/25 1、<表单验证<form></form> 2、正则表达式 3、事件

    1.<表单验证<form></form> (1).非空验证(去空格) (2).对比验证(跟一个值对比) (3).范围验证(根据一个范围进行判断) (4).固定格式验证:电 ...

  9. ranlib

    1 ranlib的缩写 random access library 2 ranlib的作用 为静态库的符号建立索引,可以加速链接,因此称用ranlib处理过的library为random access ...

  10. leetcode 316. Remove Duplicate Letters

    Given a string which contains only lowercase letters, remove duplicate letters so that every letter ...