Network
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 14021   Accepted: 5484   Special Judge

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs).
Since cables of different types are available and shorter ones are
cheaper, it is necessary to make such a plan of hub connection, that the
maximum length of a single cable is minimal. There is another problem —
not each hub can be connected to any other one because of compatibility
problems and building geometry limitations. Of course, Andrew will
provide you all necessary information about possible hub connections.

You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied.

Input

The
first line of the input contains two integer numbers: N - the number of
hubs in the network (2 <= N <= 1000) and M - the number of
possible hub connections (1 <= M <= 15000). All hubs are numbered
from 1 to N. The following M lines contain information about possible
connections - the numbers of two hubs, which can be connected and the
cable length required to connect them. Length is a positive integer
number that does not exceed 106. There will be no more than
one way to connect two hubs. A hub cannot be connected to itself. There
will always be at least one way to connect all hubs.

Output

Output
first the maximum length of a single cable in your hub connection plan
(the value you should minimize). Then output your plan: first output P -
the number of cables used, then output P pairs of integer numbers -
numbers of hubs connected by the corresponding cable. Separate numbers
by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4

题目分析:北大poj的原题目样例有问题,Sample Output是错的。开始我也不知道那个样例的输出是怎样出来的!
毕竟4个节点只需要3条边就可以全部连接了,而样例的却是4条。网上看了一下别人的博客才知道阳历是错的。并且
输出的生成树的边的方案不唯一。我的输出结果是这样的:
Accepted的代码如下:(第一次Runtime Error了, 结构体数组开小了,注意:边数最多是:15000条,而点数是:1000个)
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <string>
#include <algorithm> using namespace std; //模板的Kruskal算法
struct node
{
int u;
int v;
int w;
bool operator <(const node &x)const
{
return w<x.w;
}
}q[15002];
int e; int fa[1002];
int dd[1002][2], k=0; int findset(int x)
{
return fa[x]!=x?fa[x]=findset(fa[x]):x;
}
int main()
{
int n, m;
scanf("%d %d", &n, &m);
int i, j;
e=0;
for(i=0; i<m; i++ )
{
scanf("%d %d %d", &q[e].u, &q[e].v, &q[e].w );
e++;
}
sort(q+0, q+e ); //
for(i=0; i<=n; i++)
{
fa[i]=i;
}
int cnt=0; //边数计数器
int mm; //save the max path weight
for(j=0; j<e; j++)
{
if(findset(q[j].u) != findset(q[j].v) )
{
fa[ fa[q[j].u] ] = fa[q[j].v];
dd[k][0]=q[j].u; dd[k][1]=q[j].v; k++; cnt++;
if(cnt==n-1)
{
mm=q[j].w;
break;
}
}
}
printf("%d\n%d\n", mm, cnt );
for(i=0; i<k; i++)
{
printf("%d %d\n", dd[i][0], dd[i][1] );
} return 0;
}
												

POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)的更多相关文章

  1. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  2. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  3. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  4. POJ 1861 Network

    题意:有n个点,部分点之间可以连接无向边,每条可以连接的边都有一个权值.求一种连接方法将这些点连接成一个连通图,且所有连接了的边中权值最大的边权值最小. 解法:水题,直接用Kruskal算法做一遍就行 ...

  5. POJ 1861 Network (模版kruskal算法)

    Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: Accepted: Special Judge Descripti ...

  6. POJ1861 Network (Kruskal算法 +并查集)

    Network Description Andrew is working as system administrator and is planning to establish a new net ...

  7. Borg Maze - poj 3026(BFS + Kruskal 算法)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9821   Accepted: 3283 Description The B ...

  8. POJ 1861 Network (MST)

    题意:求解最小生成树,以及最小瓶颈生成树上的瓶颈边. 思路:只是求最小生成树即可.瓶颈边就是生成树上权值最大的那条边. //#include <bits/stdc++.h> #includ ...

  9. POJ 2395 Out of Hay(求最小生成树的最长边+kruskal)

    Out of Hay Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18472   Accepted: 7318 Descr ...

随机推荐

  1. leetcode 349 map

    只需要用map来标记1,今儿通过map的值来得到重叠的部分 class Solution { public: vector<int> intersection(vector<int& ...

  2. testng自定义html报告,根据freemaker生成

    [转] https://testerhome.com/topics/3487 [参考]https://www.cnblogs.com/cheese320/p/8890929.html  做了些修改,换 ...

  3. SpringBoot项目整合Druid进行统计监控

    0.druid介绍,参考官网 1.在项目的POM文件中添加alibaba的druid依赖 <dependency> <groupId>com.alibaba</group ...

  4. Java面试题集(三)

    Jdk与jre的区别? Java运行是环境(jre)是将要执行java程序的java虚拟机. Java开发工具包(jdk)是完整的java软件开发包,包含jre,编译器和其他工具如javaDoc,ja ...

  5. JS实现根据密码长度 显示安全条

    原文:http://www.open-open.com/code/view/1431324883763 //根据密码长度显示安全条 <ul class="clear"> ...

  6. 开源天气预报api整理

    高德天气:https://lbs.amap.com/api/webservice/guide/api/weatherinfo/? github上对开源api的整理:https://github.com ...

  7. 超级强大的淘宝开源平台(taobao-code)

    今天发现了一个免费又高级的开源SVN服务器,taobao,阿里云CODE.迫不及待的注册了一个.感觉不错,分享给大家. 先说说我们用过的几个SVN服务器吧: google code oksvn(感觉不 ...

  8. linxu下的shell脚本加密,shell生成二机制可执行文件

    再安全的加密也抵不过逆向,斗智斗勇吧,持续加密持续破解 1.简单的加密:gzexe file.sh 2.使用shc加密:下载地址:http://www.datsi.fi.upm.es/~frosal/ ...

  9. js上传文件研究

    https://github.com/shengulong/javascript-file-upload

  10. [转]PHP并发IO编程之路(深度长文)

    原文:https://www.imooc.com/article/8449 -------------------------------------------------------------- ...