Network
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 14021   Accepted: 5484   Special Judge

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs).
Since cables of different types are available and shorter ones are
cheaper, it is necessary to make such a plan of hub connection, that the
maximum length of a single cable is minimal. There is another problem —
not each hub can be connected to any other one because of compatibility
problems and building geometry limitations. Of course, Andrew will
provide you all necessary information about possible hub connections.

You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied.

Input

The
first line of the input contains two integer numbers: N - the number of
hubs in the network (2 <= N <= 1000) and M - the number of
possible hub connections (1 <= M <= 15000). All hubs are numbered
from 1 to N. The following M lines contain information about possible
connections - the numbers of two hubs, which can be connected and the
cable length required to connect them. Length is a positive integer
number that does not exceed 106. There will be no more than
one way to connect two hubs. A hub cannot be connected to itself. There
will always be at least one way to connect all hubs.

Output

Output
first the maximum length of a single cable in your hub connection plan
(the value you should minimize). Then output your plan: first output P -
the number of cables used, then output P pairs of integer numbers -
numbers of hubs connected by the corresponding cable. Separate numbers
by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4

题目分析:北大poj的原题目样例有问题,Sample Output是错的。开始我也不知道那个样例的输出是怎样出来的!
毕竟4个节点只需要3条边就可以全部连接了,而样例的却是4条。网上看了一下别人的博客才知道阳历是错的。并且
输出的生成树的边的方案不唯一。我的输出结果是这样的:
Accepted的代码如下:(第一次Runtime Error了, 结构体数组开小了,注意:边数最多是:15000条,而点数是:1000个)
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <string>
#include <algorithm> using namespace std; //模板的Kruskal算法
struct node
{
int u;
int v;
int w;
bool operator <(const node &x)const
{
return w<x.w;
}
}q[15002];
int e; int fa[1002];
int dd[1002][2], k=0; int findset(int x)
{
return fa[x]!=x?fa[x]=findset(fa[x]):x;
}
int main()
{
int n, m;
scanf("%d %d", &n, &m);
int i, j;
e=0;
for(i=0; i<m; i++ )
{
scanf("%d %d %d", &q[e].u, &q[e].v, &q[e].w );
e++;
}
sort(q+0, q+e ); //
for(i=0; i<=n; i++)
{
fa[i]=i;
}
int cnt=0; //边数计数器
int mm; //save the max path weight
for(j=0; j<e; j++)
{
if(findset(q[j].u) != findset(q[j].v) )
{
fa[ fa[q[j].u] ] = fa[q[j].v];
dd[k][0]=q[j].u; dd[k][1]=q[j].v; k++; cnt++;
if(cnt==n-1)
{
mm=q[j].w;
break;
}
}
}
printf("%d\n%d\n", mm, cnt );
for(i=0; i<k; i++)
{
printf("%d %d\n", dd[i][0], dd[i][1] );
} return 0;
}
												

POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)的更多相关文章

  1. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  2. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  3. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  4. POJ 1861 Network

    题意:有n个点,部分点之间可以连接无向边,每条可以连接的边都有一个权值.求一种连接方法将这些点连接成一个连通图,且所有连接了的边中权值最大的边权值最小. 解法:水题,直接用Kruskal算法做一遍就行 ...

  5. POJ 1861 Network (模版kruskal算法)

    Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: Accepted: Special Judge Descripti ...

  6. POJ1861 Network (Kruskal算法 +并查集)

    Network Description Andrew is working as system administrator and is planning to establish a new net ...

  7. Borg Maze - poj 3026(BFS + Kruskal 算法)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9821   Accepted: 3283 Description The B ...

  8. POJ 1861 Network (MST)

    题意:求解最小生成树,以及最小瓶颈生成树上的瓶颈边. 思路:只是求最小生成树即可.瓶颈边就是生成树上权值最大的那条边. //#include <bits/stdc++.h> #includ ...

  9. POJ 2395 Out of Hay(求最小生成树的最长边+kruskal)

    Out of Hay Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18472   Accepted: 7318 Descr ...

随机推荐

  1. java system.out.printf()的使用方法

    package test; public class Main { public static void main(String[] args) { // 定义一些变量,用来格式化输出. double ...

  2. 【Java工具】在代码头部加版权

    import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io ...

  3. JavaSE的包装类,自动装箱和自动拆箱 ,字符窜转换,toString(),equals(), hashCode()的区别

    一.基本数据类型和包装类 包装类均位于Java.lang包,包装类和基本数据类型的对应关系如下表所示: Primitive-Type   Wrapper-Class        byte       ...

  4. 如何绕过Win8、Win10的systemsetting与注册表校验设置默认浏览器

    *本文原创作者:浪子_三少,属Freebuf原创奖励计划,未经许可禁止转载 在win7时我们只需修改注册表就能设置默认浏览器,但是win8.win10下不能直接修改的因为同样的注册表项,win8.wi ...

  5. BUPT复试专题—寻找变化前01序列(2016)

    题目描述 给你一个01序列,HDLC协议处理的话,如果出现连续的5个1会补1个0.例如1111110,会变成11111010. 现在给你一个经过HDLC处理后的01序列,你需要找到HDLC处理之前的0 ...

  6. [转]Go基础之锁的初识

    当我们的程序就一个线程的时候是不需要用到锁的,但是通常我们实际的代码不会是单个线程的,所有这个时候就需要用到锁了,那么关于锁的使用场景主要涉及到哪些呢? 当我们多个线程在读相同的数据的时候则是需要加锁 ...

  7. [HTML5] Show Images of Differing Resolutions Depending on the Viewport Width with srcset

    For small viewports, we want to save bandwidth and we may be dealing with slow speeds; so it's very ...

  8. Android4.42-Setting源代码分析之蓝牙模块Bluetooth(下)

    接着上一篇Android4.42-Settings源代码分析之蓝牙模块Bluetooth(上) 继续蓝牙模块源代码的研究 THREE.蓝牙模块功能实现 switch的分析以及本机蓝牙重命名和可见性的分 ...

  9. Missing &#39;name&#39; key attribute on element activity at AndroidMan

    <uses-permission android:content="android.permission.CHANGE_WIFI_STATE" /> 这是android ...

  10. C++ 学习总结 复习篇

      友元的使用 分为友元类和友元函数     //友元类与友元函数的共同点:都可以让某一个类作为另一个类或者函数的参数.          //友元类:它让当前类成为另一个类的友元,然后,另一个类 ...