URAL1519 Formula 1 —— 插头DP
题目链接:https://vjudge.net/problem/URAL-1519
1519. Formula 1
Memory limit: 64 MB
Background
Problem
Input
Output
Samples
input | output |
---|---|
4 4 |
2 |
4 4 |
6 |
Problem Source: Timus Top Coders: Third Challenge
题意:
用一个回路去走完所有的空格,问有多少种情况?
题解:
1.学习插头DP的必经之路:《基于连通性状态压缩的动态规划问题》
2.HDU1693 Eat the Trees 这题的加强版。
3.相对于HDU1693,由于此题限制了只能用一个回路,所以在处理的时候,需要记录轮廓线上,每个插头分别属于哪个连通分量的,以此避免形成多个回路。
4.由于m<=12,故连通分量最多为12/2 = 6个,再加上没有插头的情况,所以轮廓线上每个位置的状态共有7种,为了加快速度,我们采用8进制对其进行压缩。
5.对于一条轮廓线,最多有:8^(12+1)种状态,所以直接用数组进行存储或者直接枚举所以状态是不可行的。但我们知道其中有许多状态是无效的,所以我们采用哈希表来存在有效状态,即能解决空间有限的问题,还能减少直接枚举所需要的时间花费。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e5;
const int HASH = 1e4; int n, m, last_x, last_y;
bool maze[][]; struct //注意哈希表的大小
{
int size, head[HASH], next[MAXN];
LL state[MAXN], sum[MAXN]; void init()
{
size = ;
memset(head, -, sizeof(head));
} void insert(LL status, LL Sum)
{
int u = status%HASH;
for(int i = head[u]; i!=-; i = next[i])
{
if(state[i]==status)
{
sum[i] += Sum;
return;
}
}
state[size] = status; //头插法
sum[size] = Sum;
next[size] = head[u];
head[u] = size++;
} }Hash_map[]; struct
{
int code[]; //用于记录轮廓线上每个位置的插头状态
LL encode(int m) //编码:把轮廓线上的信息压缩到一个longlong类型中
{
LL status = ;
int id[], cnt = ;
memset(id, -, sizeof(id));
id[] = ;
for(int i = m; i>=; i--) //从高位到低位。为每个连通块重新编号,采用最小表示法。
{
if(id[code[i]]==-) id[code[i]] = ++cnt;
code[i] = id[code[i]];
status <<= ; //编码
status += code[i];
}
return status;
} void decode(int m, LL status) //解码:将longlong类型中轮廓线上的信息解码到数组中
{
memset(code, , sizeof(code));
for(int i = ; i<=m; i++) //从低位到高位
{
code[i] = status&;
status >>= ;
}
} void shift(int m) //左移:在每次转行的时候都需要执行。
{
for(int i = m-; i>=; i--)
code[i+] = code[i];
code[] = ;
} }Line; void transfer_blank(int i, int j, int cur)
{
for(int k = ; k<Hash_map[cur].size; k++) //枚举上一个格子所有合法的状态
{
LL status = Hash_map[cur].state[k]; //得到状态
LL Sum = Hash_map[cur].sum[k]; //得到数量
Line.decode(m, status); //对状态进行解码
int up = Line.code[j]; //得到上插头
int left = Line.code[j-]; //得到下插头 if(!up && !left) //没有上、左插头,新建分量
{
if(maze[i+][j] && maze[i][j+]) //如果新建的两个插头所指向的两个格子可行,新建的分量才合法
{
Line.code[j] = Line.code[j-] = ; //为新的分量编号,最大的状态才为6
Hash_map[cur^].insert(Line.encode(m), Sum);
}
}
else if( (left&&!up) || (!left&&up) ) //仅有其中一个插头,延续分量
{
int line = left?left:up; //记录是哪一个插头
if(maze[i][j+]) //往右延伸
{
Line.code[j-] = ;
Line.code[j] = line;
Hash_map[cur^].insert(Line.encode(m), Sum);
}
if(maze[i+][j]) //往下延伸
{
Line.code[j-] = line;
Line.code[j] = ;
if(j==m) Line.shift(m);
Hash_map[cur^].insert(Line.encode(m), Sum);
}
}
else //上、左插头都存在,尝试合并。
{
if(up!=left) //如果两个插头属于两个联通分量,那么就合并
{
Line.code[j] = Line.code[j-] = ;
for(int t = ; t<=m; t++) //随便选一个编号最为他们合并后分量的编号
if(Line.code[t]==up)
Line.code[t] = left;
if(j==m) Line.shift(m);
Hash_map[cur^].insert(Line.encode(m), Sum);
}
else if(i==last_x && j==last_y) //若两插头同属一个分量,则只能在最后的可行格中合并,否则会出现多个联通分量
{
Line.code[j] = Line.code[j-] = ;
if(j==m) Line.shift(m);
Hash_map[cur^].insert(Line.encode(m), Sum);
}
}
}
} void transfer_block(int i, int j, int cur)
{
for(int k = ; k<Hash_map[cur].size; k++)
{
LL status = Hash_map[cur].state[k]; //得到状态
LL Sum = Hash_map[cur].sum[k]; //得到数量
Line.decode(m, status);
Line.code[j] = Line.code[j-] = ;
if(j==m) Line.shift(m);
Hash_map[cur^].insert(Line.encode(m), Sum);
}
} int main()
{
char s[];
while(scanf("%d%d", &n, &m)!=EOF)
{
memset(maze, false, sizeof(maze));
for(int i = ; i<=n; i++)
{
scanf("%s", s+);
for(int j = ; j<=m; j++)
{
if(s[j]=='.')
{
maze[i][j] = true;
last_x = i; //记录最后一个可行格
last_y = j;
}
}
} int cur = ;
Hash_map[cur].init(); //初始化
Hash_map[cur].insert(, ); //插入初始状态
for(int i = ; i<=n; i++)
for(int j = ; j<=m; j++)
{
Hash_map[cur^].init();
if(maze[i][j])
transfer_blank(i, j, cur);
else
transfer_block(i, j ,cur);
cur ^= ;
} LL last_status = ; //最后的轮廓线就是最后一行,且每个位置都没有插头
LL ans = Hash_map[cur].size?Hash_map[cur].sum[last_status]:;
printf("%I64d\n", ans);
}
}
URAL1519 Formula 1 —— 插头DP的更多相关文章
- [URAL1519] Formula 1 [插头dp入门]
题面: 传送门 思路: 插头dp基础教程 先理解一下题意:实际上就是要你求这个棋盘中的哈密顿回路个数,障碍不能走 看到这个数据范围,还有回路处理,就想到使用插头dp来做了 观察一下发现,这道题因为都是 ...
- 【BZOJ1814】Ural 1519 Formula 1 插头DP
[BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...
- 【Ural】1519. Formula 1 插头DP
[题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...
- bzoj1814 Ural 1519 Formula 1(插头dp模板题)
1814: Ural 1519 Formula 1 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 924 Solved: 351[Submit][Sta ...
- bzoj 1814 Ural 1519 Formula 1 ——插头DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1814 普通的插头 DP .但是调了很久.注意如果合并两个 1 的话,不是 “把向右第一个 2 ...
- Ural 1519 Formula 1 插头DP
这是一道经典的插头DP单回路模板题. 用最小表示法来记录连通性,由于二进制的速度,考虑使用8进制. 1.当同时存在左.上插头的时候,需要判断两插头所在连通块是否相同,若相同,只能在最后一个非障碍点相连 ...
- URAL Formula 1 ——插头DP
[题目分析] 一直听说这是插头DP入门题目. 难到爆炸. 写了2h,各种大常数,ural垫底. [代码] #include <cstdio> #include <cstring> ...
- bzoj 1814 Ural 1519 Formula 1 插头DP
1814: Ural 1519 Formula 1 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 942 Solved: 356[Submit][Sta ...
- BZOJ1814: Ural 1519 Formula 1(插头Dp)
Description Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic gam ...
随机推荐
- 【bzoj1710】[Usaco2007 Open]Cheappal 廉价回文
[bzoj1710][Usaco2007 Open]Cheappal 廉价回文 Description 为了跟踪所有的牛,农夫JOHN在农场上装了一套自动系统. 他给了每一个头牛一个电子牌号 当牛走过 ...
- dockerfile各种命令解析
1.ADD命令,如果ADD的是压缩包,ADD之后会自动进行解压.....
- python3.x对python2.x变动
原文地址:http://rookiedong.iteye.com/blog/1185403 python 2.4 与 python 3.0 的比较 一. print 从语句变为函数 原: pr ...
- Hadoop 连接mysql
1 mysql数据导入到hdfs数据 hadoop提供了org.apache.hadoop.io.Writable接口来实现简单的高效的可序列化的协议,该类基于DataInput和DataOutput ...
- PR物料KFF弹出LOV - WHERE条件重写
PROCEDURE event (event_name VARCHAR2)IS---- This procedure allows you to execute your code at specif ...
- 使用Myeclipse + SVN + TaoCode 免费实现项目版本控制的详细教程
通过Myeclipse + SVN插件 + TaoCOde可以省去代码仓库的租建:同时还可以很好的满足小团队之间敏捷开发的需求.接下来详细介绍整个搭建流程. 首先,介绍所用到的工具: 1,Myecli ...
- ubuntu 14.04安装nodejs
http://stackoverflow.com/questions/32902699/cannot-install-ember-on-ubuntu-1404/33495134
- 《C++ Primer Plus》学习笔记9
<C++ Primer Plus>学习笔记9 第15章 友元.异常和其他 <<<<<<<<<<<<<<& ...
- Solidworks如何显示装饰螺纹线
1 工具-选项 2 文档属性-上色的装饰螺纹线 3 这样我再插入装饰螺纹线的时候就有效果了
- mongodb+php通过_id查询
在php中通过_id 在mongodb中查找特定记录: <?php $conn=new Mongo("127.0.0.1:27017"); #连接指定端口远程主机 $db=$ ...