并不对劲的cdq分治解三维偏序
为了反驳隔壁很对劲的太刀流,并不对劲的片手流决定与之针锋相对,先一步发表cdq分治解三维偏序。
很对劲的太刀流在这里->
参照一、二维偏序的方法,会发现一位偏序就是直接排序,可以看成通过排序使第一维无效。二维偏序是排序+树状数组,就是先通过排序消除了第一维的影响,再通过树状数组进行统计。那么以此类推,三位偏序应该就是树套树状数组…啊不对,是先通过排序消除第一维的影响,再通过【某种方法】消除第二维的影响,再用树状数组统计。
传说中的【某种方法】就是cdq分治,它是一种通过计算前一半对后一半的影响的降维手段。
具体来说,假设三维分别是x,y,z,先按x排序。分治时每次将前半边、后半边分别按y排序。虽然现在x的顺序被打乱了,但是前半边还是都小于后半边的,所以要是只计算前半边对后半边的偏序关系,是不会受到x的影响的。维护后一半的指针i,前一半的指针j,每次将i后移一位时,若y[j]<=y[i]则不断后移j,并不断将z[j]加入树状数组。然后再查询树状数组中有多少数小于等于z[i]。 最后要清空树状数组。
还有“偏序问题中出现了完全相同的要把它们合并”、“清空树状数组时要减回去否则时间超限”、“前大括号必须放在下面“这些细节在此就不提了。
然后就会发现,一维偏序也可以cdq(虽然大部分人叫它归并排序)、树状数组做,二维偏序也可以cdq做。也就是说,这些降维手段用在第几维都可以。那么会不会有n维偏序,cdq套cdq什么的呢?据说那样复杂度就会在n logkn,还不如n^2暴力枚举。
其实cdq应该不会只局限于偏序问题,也许会有整体二分之类的的离线方法是参照cdq的算出前一半对后一半的影响这种思想呢?
不过强制在线就GG了。
垃圾太刀!!!
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define maxn 100010
#define maxk 200010
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;
char ch=getchar();
while(isdigit(ch)== && ch!='-')ch=getchar();
if(ch=='-')f=-,ch=getchar();
while(isdigit(ch))x=x*+ch-'',ch=getchar();
return x*f;
}
inline void write(int x)
{
int f=;char ch[];
if(!x){puts("");return;}
if(x<){putchar('-');x=-x;}
while(x)ch[++f]=x%+'',x/=;
while(f)putchar(ch[f--]);
putchar('\n');
}
typedef struct node
{
int x,y,z,ans,w;
}stnd;
stnd a[maxn],b[maxn];
int n,cnt[maxk];
int k,n_;
bool cmpx(stnd u,stnd v)
{
if(u.x==v.x)
{
if(u.y==v.y)
return u.z<v.z;
return u.y<v.y;
}
return u.x<v.x;
}
bool cmpy(stnd u,stnd v)
{
if(u.y==v.y)
return u.z<v.z;
return u.y<v.y;
}
struct treearray
{
int tre[maxk],kk;
int lwbt(int x){return x&(-x);}
int ask(int i){int ans=; for(;i;i-=lwbt(i))ans+=tre[i];return ans;}
void add(int i,int k){for(;i<=kk;i+=lwbt(i))tre[i]+=k;}
}t;
void cdq(int l,int r)
{
if(l==r)return;
int mid=(l+r)>>;
cdq(l,mid);cdq(mid+,r);
sort(a+l,a+mid+,cmpy);
sort(a+mid+,a+r+,cmpy);
int i=mid+,j=l;
for(;i<=r;i++)
{
while(a[j].y<=a[i].y && j<=mid)
t.add(a[j].z,a[j].w),j++;
a[i].ans+=t.ask(a[i].z);
}
for(i=l;i<j;i++)
t.add(a[i].z,-a[i].w);
}
int main()
{
n_=read(),k=read();t.kk=k;
for(int i=;i<=n_;i++)
b[i].x=read(),b[i].y=read(),b[i].z=read();
sort(b+,b+n_+,cmpx);
int c=;
for(int i=;i<=n_;i++)
{
c++;
if(b[i].x!=b[i+].x || b[i].y!=b[i+].y || b[i].z!=b[i+].z )
a[++n]=b[i],a[n].w=c,c=;
}
cdq(,n);
for(int i=;i<=n;i++)
cnt[a[i].ans+a[i].w-]+=a[i].w;
for(int i=;i<n_;i++)
write(cnt[i]);
return ;
}
并不对劲的cdq
宣传一波电教(现在是电教G了(现在是电教X了(现在是电教XX了))),欢迎加入。
并不对劲的cdq分治解三维偏序的更多相关文章
- cdq分治解决三维偏序
问题背景 在三维坐标系中有n个点,坐标为(xi,yi,zi). 定义一个点A比一个点B小,当且仅当xA<=xB,yA<=yB,zA<=zB.问对于每个点,有多少个点比它小.(n< ...
- 【算法学习】【洛谷】cdq分治 & P3810 三维偏序
cdq是何许人也?请参看这篇:https://wenku.baidu.com/view/3b913556fd0a79563d1e7245.html. 在这篇论文中,cdq提出了对修改/询问型问题(Mo ...
- hdu5618(cdq分治求三维偏序)
题意:给n(n<=100000)个点,坐标为(xi,yi,zi)(1<=xi,yi,zi<=100000),定义一个点A比一个点B小,当且仅当xA<=xB,yA<=yB, ...
- SPOJ:Another Longest Increasing Subsequence Problem(CDQ分治求三维偏序)
Given a sequence of N pairs of integers, find the length of the longest increasing subsequence of it ...
- BZOJ 3262: 陌上花开 (cdq分治,三维偏序)
#include <iostream> #include <stdio.h> #include <algorithm> using namespace std; c ...
- HDU4742 CDQ分治,三维LIS
HDU4742 CDQ分治,三维LIS 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4742 题意: 每个球都有三个属性值x,y,z,要求最长的lis的 ...
- CDQ解决一些三维偏序的问题
本来几天前就该记录的东西,硬生生被我拖到了现在,太懒了... 在cdq学习时,二维偏序已经解决了,无非就是先sort使第一维有序,然后再用cdq或者数据结构处理第二维.而三维偏序的时候呢,大佬的做法好 ...
- CDQ分治(三维偏序集)
排序,三关键字 去重 归并排序+树状数组 #include<bits/stdc++.h> using namespace std; #define re register int cons ...
- 算法复习——cdq分治
题目: Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要 ...
随机推荐
- [BZOJ3052][UOJ#58][WC2013]糖果公园
[BZOJ3052][UOJ#58][WC2013]糖果公园 试题描述 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来 ...
- POJ3041:Asteroids【二分图匹配】
二分图的最大匹配=最小顶点覆盖(Konig定理)=最大独立集的补集最大匹配经典的三种模型 这题就是最小顶点覆盖,顺便这题留给我的经验就是调试的时候一定要细心细心再细心对模板的各个细节都要熟!! #i ...
- 获取当前日期的T-SQL语句
CONVERT(nvarchar(10),count_time,121): CONVERT为日期转换函数,一般就是在时间类型 (datetime,smalldatetime)与字符串类型(nchar, ...
- iOS 调用系统相册 相机 时,显示中文标题
解决手机语言已经设置显示中文 在调用系统相册.相机界面 时显示英文问题, 在 info.plist里面添加Localized resources can be mixed YES 表示是否允许应用程序 ...
- Linux内存管理-内核的shmall和shmmax参数(性能调优)(转)
内核的shmall和shmmax参数 SHMMAX=配置了最大的内存segment的大小:这个设置的比SGA_MAX_SIZE大比较好. SHMMIN=最小的内存segment的大小 SHMMNI=整 ...
- 对dispatch_async到主线程的逻辑封装成C/C++接口类型
背景:代码里面有时候会把将要运行的内容放到主线程里面运行,但假设已经是主线程里面的代码调用dispatch_async的时候偶尔会出现crash,所以就须要推断是否已经在主线程里面了. 通常的做法类似 ...
- iOS开发-UITableView单选多选/复选实现1
TableView怎样实现单选或者多选呢? 我们的直接思路是改动某一个Cell的样式就可以, 那么改动样式须要通过改动相应的数据, 从这里能够判断我们须要给Cell相应的数据设置一个标志位, 当选中的 ...
- Sql Server 导入还有一个数据库中的表数据
在涉及到SQL Server编程或是管理时一定会用到数据的导入与导出, 导入导出的方法有多种,此处以SQL Server导入表数据为例.阐述一下: 1.打开SQL Server Management ...
- CSS多种方法实现分隔线
<!DOCTYPE HTML> <html> <head> <meta charset="UTF-8" /> <title&g ...
- java SE基础(Collection接口概述)
Collection接口相关集成关系例如以下图 1. 关于可迭代接口(Iterable) 可迭代接口仅包括一个方法,返回一个在一组T类型元素上进行迭代的迭代器: public ...