题意:有n只青蛙,m个石头(围成圆圈)。第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少?

析:首先可以知道的是第 i 只青蛙可以跳到 k * gcd(ai, m),然后我就计算所有的等差数列,但是好像如果全算,那么就可能会有重复,所以我们考虑用容斥原理。

先把 m 的所有因数都求出来,然后把 gcd(ai, m),都标记一下,然后再去计算,多了就减去,少了就加。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define debug puts("+++++")
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e4 + 5;
const LL mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
inline int lcm(int a, int b){ return a * b / gcd(a, b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
vector<int> v;
int f[maxn], num[maxn]; int main(){
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
scanf("%d %d", &n, &m);
v.clear();
for(int i = 1; i*i <= m; ++i) if(m % i == 0){
v.push_back(i);
if(i*i != m && i != 1) v.push_back(m/i);
}
sort(v.begin(), v.end());
memset(num, 0, sizeof num);
memset(f, 0, sizeof f);
int x;
for(int i = 0; i < n; ++i){
scanf("%d", &x);
x = gcd(x, m);
for(int j = 0; j < v.size(); ++j) if(v[j] % x == 0){
f[j] = 1;
}
}
LL ans = 0;
for(int i = 0; i < v.size(); ++i) if(f[i] != num[i]){
int tmp = m / v[i] - 1;
ans += (LL)m * tmp / 2 * (f[i] - num[i]);
tmp = f[i] - num[i];
for(int j = 0; j < v.size(); ++j) if(v[j] % v[i] == 0){
num[j] += tmp;
}
}
printf("Case #%d: %I64d\n", kase, ans);
}
return 0;
}

HDU 5514 Frogs (数论容斥)的更多相关文章

  1. hdu 5514 Frogs(容斥)

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  2. POJ 1150 The Last Non-zero Digit 数论+容斥

    POJ 1150 The Last Non-zero Digit 数论+容斥 题目地址: id=1150" rel="nofollow" style="colo ...

  3. HDU 5514 Frogs 容斥定理

    Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...

  4. hdu 5514 Frogs 容斥思想+gcd 银牌题

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  5. HDU 4135 Co-prime(容斥+数论)

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. 数论 + 容斥 - HDU 4059 The Boss on Mars

    The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...

  7. 数论 + 容斥 - HDU 1695 GCD

    problem's Link mean 给定五个数a,b,c,d,k,从1~a中选一个数x,1~b中选一个数y,使得gcd(x,y)=k. 求满足条件的pair(x,y)数. analyse 由于b, ...

  8. HDU - 2204 Eddy's爱好 (数论+容斥)

    题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数 分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形 ...

  9. HDU 5514 Frogs

    Frogs Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ID: 5514 ...

随机推荐

  1. boost thread 在非正常退出时 内存泄露问题

    在使用boost的thread库的时候,如果主程序退出,thread创建的线程不做任何处理,则会出现内存泄露. 解决方法: 在主线程退出时,对所有thread使用interrupt()命令,然后主程序 ...

  2. PHP中的魔术方法【转载】

    __construct, __destruct , __call, __callStatic,__get, __set, __isset, __unset , __sleep, __wakeup, _ ...

  3. 如何判断一个app是原生app还是 webapp,或者是混合app

    1.(快速)滚动起来是否比较卡2.图片加载失败的图标 断网检查不是绝对的,web app并不一定是在远程服务器上的, 也能pack在程序里,load本地的资源也能算是web app.     web ...

  4. 继续畅通工程--hdu1879(最小生成树 模板题)

    http://acm.hdu.edu.cn/showproblem.php?pid=1879 刚开始么看清题  以为就是n行  后来一看是n*(n-1)/2行   是输入错误  真是够够的 #incl ...

  5. js的基础(平民理解的执行上下文/调用堆栈/内存栈/值类型/引用类型)

    与以前的切图比较,现在的前端开发对js的要求似乎越来越高,在开发中,我们不仅仅是要知道如何运用现有的框架(react/vue/ng), 而且我们对一些基础的知识的依赖越来越大. 现在我们就用平民的方法 ...

  6. Access to Image at 'file:///Users canvas本地图片跨域报错解决方案

    1.设置跨域 添加跨域条件   crossorigin="anonymous" 前提是后端支持这个图片跨域 2.上面加了之后还是报错 如标题所示 你需要把你的项目放到服务器上面跑 ...

  7. 【Todo】开个文章学VUE咯

    2017年FE架构组制定的框架选型主导为VUE.看了一下VUE的介绍,很不错. 开学~ https://www.zhihu.com/question/38213423 这个里面有VUE应用和背景的一些 ...

  8. 【APUE】vim常用命令

    转自:http://coolshell.cn/articles/5426.html 基本命令: i → Insert 模式,按 ESC 回到 Normal 模式. x → 删当前光标所在的一个字符. ...

  9. DRBD原理知识

    DRBD(Distributed Relicated Block Device 分布式复制块设备), 可以解决磁盘单点故障.一般情况下只支持2个节点. 大致工作原理如下图: 一般情况下文件写入磁盘的步 ...

  10. [Bash] Search for Text with `grep`

    In this lesson, we’ll use grep to find text patterns. We’ll also go over some of the flags that grep ...