洛谷 P2774 方格取数问题【最小割】
因为都是正整数,所以当然取得越多越好。先把所有点权加起来,黑白染色后,s向所有黑点连流量为点权的边,所有白点向t连流量为点权的边,然后黑点向相邻的四个白点连流量为inf的边,表示不可割,这样一来,对于一条链上的s->u->v->t,只能割掉u的点权或者v的点权,那么最小割就是用最小的代价是st分开,也就是选择点权和最小的点集合使得图合法。答案是sum-dinic
!:只用把黑点向相邻点连inf即可,白点不用
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=100005,inf=1e9;
int m,n,h[N],cnt=1,le[N],sum,s,t;
struct qwe
{
int ne,to,va;
}e[N*20];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||f==0)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
int main()
{
m=read(),n=read();
s=0,t=n*m+1;
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
{
int x=read(),id=(i-1)*n+j;
sum+=x;
if((i+j)%2==1)
{
ins(s,id,x);
if(i!=1)
ins(id,id-n,inf);
if(i!=m)
ins(id,id+n,inf);
if(j!=1)
ins(id,id-1,inf);
if(j!=n)
ins(id,id+1,inf);
}
else
ins(id,t,x);
}
printf("%d\n",sum-dinic());
return 0;
}
洛谷 P2774 方格取数问题【最小割】的更多相关文章
- 洛谷P2774 方格取数问题(最小割)
题意 $n \times m$的矩阵,不能取相邻的元素,问最大能取多少 Sol 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连 ...
- 洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
- 洛谷 - P2774 - 方格取数问题 - 二分图最大独立点集 - 最小割
https://www.luogu.org/problemnew/show/P2774 把两个相邻的节点连边,这些边就是要方便最小割割断其他边存在的,容量无穷. 这种类似的问题的话,把二分图的一部分( ...
- 洛谷P2774 方格取数问题(最小割)
传送门 考虑一下,答案就是全局和减去舍弃和 不难发现,如果我们按行数+列数的奇偶性分为两类,那么每一类中的数必然互不相邻 那么我们把原图的点分为黑点和白点两类,原地向白点连边,黑点向汇点连边,容量为点 ...
- [洛谷P2774]方格取数问题
题目大意:给你一个$n\times m$的方格,要求你从中选择一些数,其中没有相邻两个数,使得最后和最大 题解:网络流,最小割,发现相邻的两个点不可以同时选择,进行黑白染色,原点向黑点连一条容量为点权 ...
- 洛谷 [P2774] 方格取数问题
二分图最大点权独立集 通过题目描述我们可以很明显的看出要通过二分图建模,二分图求最大独立点集很容易,就是建立二分图求n-最小割,然而这里加入了权值,而且权值是在点上的,那么我们对于每个点连一条到源点或 ...
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- HDU 1569 方格取数(2) (最小割)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
随机推荐
- SGU 106 The equation【扩展欧几里得】
先放一张搞笑图.. 我一直wa2,这位不认识的大神一直wa9...这样搞笑的局面持续了一个晚上...最后各wa了10发才A... 题目链接: http://acm.hust.edu.cn/vjudge ...
- T1992 聚会 codevs
http://codevs.cn/problem/1992/ 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 小S 想要从某地 ...
- 利用WiFi Pineapple Nano渗透客户端获取SHELL
前言: 前两篇文章介绍了The WiFi Pineapple Nano设备的一些主要功能模块,例如PineAP.SSLsplit和Ettercap等.今天给大家实际场景演示下如何利用Pineapple ...
- 【Todo】开个文章学VUE咯
2017年FE架构组制定的框架选型主导为VUE.看了一下VUE的介绍,很不错. 开学~ https://www.zhihu.com/question/38213423 这个里面有VUE应用和背景的一些 ...
- 使用Python实现一个简单的项目监控
在公司里做的一个接口系统,主要是对接第三方的系统接口,所以,这个系统里会和很多其他公司的项目交互.随之而来一个很蛋疼的问题,这么多公司的接口,不同公司接口的稳定性差别很大,访问量大的时候,有的不怎么行 ...
- curl的使用(from 阮一峰)
1. http://www.ruanyifeng.com/blog/2011/09/curl.html 2. https://curl.haxx.se/docs/httpscripting.h ...
- sqlzoo练习答案--SELECT within SELECT Tutorial
This tutorial looks at how we can use SELECT statements within SELECT statements to perform more com ...
- Zookeeper 简单操作
1. 连接到zookeeper服务 [java2000_wl@localhost zookeeper-3]$ bin/zkCli.sh -server 127.0.0.1:2181 也可以连接远端的 ...
- jira 系统服务部署(包括5.0.3版本和7.2版本)
1. 安装环境准备 1.1 安装文件下载 链接:http://pan.baidu.com/s/1i5orI9B 密码:6lih 1.2 java环境准备 2.1 jdk安装 2.2 java环 ...
- mysql07---主从复制
mysql主从复制,replication,(可以一主多从,不可一从多主) 原理: 主从分离,最少2台服务器.主服务器里面的数据,要在从服务器里面都有一份. 把主服务器的所有insert,update ...