Wannafly模拟赛2 B river(拉格朗日乘数法)
题目
https://www.nowcoder.com/acm/contest/4/B
题意
有n条南北流向的河并列排着,水流速度是v,现在你需要从西岸游到东岸,总共T个时间,你的游泳速度是u,问东岸的上岸点和西岸的下水点之间距离最大是多少?
分析
其实就是求南北方向位移的最大值
如果给定在一条河里的游泳时间,那么当然可以算出在这条河里的位移最大值
具体的对于第i条河来说,将游泳速度u分成水平方向的$x$和竖直方向的$\sqrt{u^2-x^2}$
那么容易整理出最大位移$f_i(t)=vt+\sqrt{u^2t^2-w_i^2}$
这个问题最难的就是时间分配,即如何将T分配成$t_1,t_2,..,t_n$满足$t_1+t_2+...+t_n=T$,并且使得$S(t_1,t_2,..,t_n)=f_1(t_1)+f_2(t_2)+..+f_n(t_n)$最大
这是一个多元函数求极值的问题,考虑拉格朗日乘数法
构造拉格朗日函数$L(t_1,t_2,..,t_n,\lambda)=f_1(t_1)+f_2(t_2)+..+f_n(t_n)+\phi(t_1,t_2,..,t_n)$,其中$\phi(t_1,t_2,..,t_n)=t_1+t_2+...+t_n-T$
只需要求这个L的各个偏导,令其为0就行了
于是我们得到了重要的结论——${f_1}'(t_1)={f_2}'(t_2)=...={f_n}'(t_n)$
我们可以去二分这个导数值mid,然后去反解$t_i$
根据$\sum {t_i}$和$T$的大小来改变mid的值
注意到能二分导数值反解$t_i$的情况当且仅当$f_i$是单调的,但${f_1}'(t_1)={f_2}'(t_2)=...={f_n}'(t_n)$这个性质却和函数表达式无关
Wannafly模拟赛2 B river(拉格朗日乘数法)的更多相关文章
- [Math & Algorithm] 拉格朗日乘数法
拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...
- 《University Calculus》-chaper12-多元函数-拉格朗日乘数法
求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通 ...
- bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)
题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...
- ML(附录4)——拉格朗日乘数法
基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法.其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将 ...
- CodeChef TWOROADS(计算几何+拉格朗日乘数法)
题面 传送门 简要题意:给出\(n\)个点,请求出两条直线,并最小化每个点到离它最近的那条直线的距离的平方和,\(n\leq 100\) orz Shinbokuow 前置芝士 给出\(n\)个点,请 ...
- BZOJ3775: 点和直线(计算几何+拉格朗日乘数法)
题面 传送门 题解 劲啊-- 没有和\(Claris\)一样推,用了类似于\(Shinbokuow\)推已知点求最短直线的方法,结果\(WA\)了好几个小时,拿\(Claris\)代码拍了几个小时都没 ...
- BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】
题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...
- 拉格朗日乘数法 和 KTT条件
预备知识 令 \(X\) 表示一个变量组(向量) \((x_1, x_2, \cdots, x_n)\) 考虑一个处处可导的函数 \(f(X)\), 为了方便描述, 这里以二元函数为例 对于微分, 考 ...
- CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)
[传送门]http://codeforces.com/problemset/problem/813/C [题意]给定整数a,b,c,s,求使得 xa yb zc值最大的实数 x,y,z , 其中x ...
随机推荐
- (译)IOS block编程指南 1 介绍
Introduction(介绍) Block objects are a C-level syntactic and runtime feature. They are similar to stan ...
- JQQ文字素材
1.十二生肖:子鼠.丑牛.寅虎.卯兔.辰龙.巳舍.午马.未羊.申猴.酉鸡.戌狗.亥猪.丙申年(2016)乙未年(2015)甲午年(2014)癸巳年(2013)壬辰年(2012)辛卯年(2011)庚寅年 ...
- 【转载】用Python实现端口映射功能(A/B/C内外网)
转载地址 :http://hutaow.com/blog/2014/09/08/write-tcp-mapping-program-with-python/ 有A,B,C三台计算机,A,B互通,B,C ...
- QT_3
1.QT中命名的规范和常用的快捷键 1.1 命名规范: 类名:首字母大写 多个单词时单词与单词之间首 字母大写 函数名:变量名称 首字母小写 多个单词时,单词和单词之间首字母大写 1. ...
- PHP18 PHP与AJAX
学习要点 JavaScript实现Ajax jQuery实现Ajax JSON PHP的JSON函数 JavaScript处理JSON数据 JavaScript实现Ajax 什么是Ajax 搜狗地图 ...
- 全志T8智能汽车方案芯片参数介绍
T8处理器代表了Allwinner在智能汽车市场上的最新成就.T8适用于需要三维图形.高级视频处理.精密相机.多种连接选项和高水平系统集成的应用程序.它将把先进的消费电子体验带入未来的汽车,实现高性能 ...
- python关于入参中,传入的是指针还是引用
偶然看到别人的代码,发现有的会传入参数之后,做一次copy,试验一下,关于入参中,传入的是指针还是引用先说自己的结论:1.如果传入的是简单的类型,那么传入应该是引用的数值,2.假如传入的是df这种类型 ...
- iOS之绘制像素到屏幕
译注:这篇文章虽然比较长,但是里面的内容还是很有价值的. 像素是如何绘制到屏幕上面的?把数据输出到屏幕的方法有很多,通过调用很多不同的framework和不同的函数.这里我们讲一下这个过程背后的东西. ...
- 找回Settings Sync的gist id和token
方法一:如果你本地有缓存参考:https://www.cnblogs.com/zhang1028/p/9514471.html 方法二:如果你电脑重装系统了 1.找回gist id 登陆你的githu ...
- [IOS初学]ios 第一篇 storyboard 与viewcontroller的关系 - Zoe_J
时间 2014-07-27 16:08:00 博客园-所有随笔区 原文 http://www.cnblogs.com/zoe-j/p/3871501.html 主题 StoryBoard 学习了一 ...