Golden Eggs

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 501    Accepted Submission(s): 281

Problem Description
There is a grid with N rows and M columns. In each cell you can choose to put a golden or silver egg in it, or just leave it empty. If you put an egg in the cell, you will get some points which depends on the color of the egg. But for every pair of adjacent
eggs with the same color, you lose G points if there are golden and lose S points otherwise. Two eggs are adjacent if and only if there are in the two cells which share an edge. Try to make your points as high as possible.
 
Input
The first line contains an integer T indicating the number of test cases.

There are four integers N, M, G and S in the first line of each test case. Then 2*N lines follows, each line contains M integers. The j-th integer of the i-th line Aij indicates the points you will get if there is a golden egg in the cell(i,j). The j-th integer
of the (i+N)-th line Bij indicates the points you will get if there is a silver egg in the cell(i,j).



Technical Specification

1. 1 <= T <= 20

2. 1 <= N,M <= 50

3. 1 <= G,S <= 10000

4. 1 <= Aij,Bij <= 10000
 
Output
For each test case, output the case number first and then output the highest points in a line.
 
Sample Input
2
2 2 100 100
1 1
5 1
1 4
1 1
1 4 85 95
100 100 10 10
10 10 100 100
 
Sample Output
Case 1: 9
Case 2: 225
 
Author
hanshuai
 
Source
题意:有一个n*m的格子。能够放两种颜色我蛋:金蛋和银蛋。假设相邻格子里放同一颜色的蛋:假设为金蛋则降低价值为G,假设银蛋则降低价值为S。接下来n行m列表示放金蛋得到的价值mp1[][],再接下来n行m列表示放银蛋得到的价值mp2[][]。问最大能得到的价值。
解题:vs:源点,vt:汇点。建图:把n*m个格子分成奇偶两部分。每一个点都须要拆成两个点v,v'。奇点v:<vs , v , mp1[i][j]>。<v , v' , INF>。<v' , vt , mp2[i][j]>。与v相邻点u。<v , u' , G>。

偶点u:<vs , u , mp2[i][j]>。<u , u' , INF>,<u' , vt , mp1[i][j]>。

与u相邻点v。<u
, v' , S>。这样图建好了,那么答案:mp1[][]+mp2[][] -maxflow。

/*
最大流:SAP算法,与ISAP的区别就是不用预处理
*/
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define captype int const int MAXN = 100010; //点的总数
const int MAXM = 400010; //边的总数
const int INF = 1<<30;
struct EDG{
int to,next;
captype cap,flow;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN]; //每种距离(或可觉得是高度)点的个数
int dis[MAXN]; //每一个点到终点eNode 的最短距离
int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN]; void init(){
eid=0;
memset(head,-1,sizeof(head));
}
//有向边 三个參数。无向边4个參数
void addEdg(int u,int v,captype c,captype rc=0){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; edg[eid].flow=0; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; edg[eid].flow=0; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包含源点和汇点的总点个数。这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0; //最大流
int u=sNode;
while(dis[sNode]<n){ //推断从sNode点有没有流向下一个相邻的点
if(u==eNode){ //找到一条可增流的路
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]) //从这条可增流的路找到最多可增的流量Min
if(Min>edg[i].cap-edg[i].flow){
Min=edg[i].cap-edg[i].flow;
inser=i;
}
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
edg[i].flow+=Min;
edg[i^1].flow-=Min; //可回流的边的流量
}
ans+=Min;
u=edg[inser^1].to;
continue;
}
bool flag = false; //推断是否能从u点出发可往相邻点流
int v;
for(int i=cur[u]; i!=-1; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap-edg[i].flow>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
//假设上面没有找到一个可流的相邻点。则改变出发点u的距离(也可觉得是高度)为相邻可流点的最小距离+1
int Mind= n;
for(int i=head[u]; i!=-1; i=edg[i].next)
if(edg[i].cap-edg[i].flow>0 && Mind>dis[edg[i].to]){
Mind=dis[edg[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans; //当dis[u]这样的距离的点没有了。也就不可能从源点出发找到一条增广流路径
//由于汇点到当前点的距离仅仅有一种,那么从源点到汇点必定经过当前点。然而当前点又没能找到可流向的点,那么必定断流
dis[u]=Mind+1;//假设找到一个可流的相邻点,则距离为相邻点距离+1,假设找不到。则为n+1
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^1].to; //退一条边
}
return ans;
}
int main()
{
int T,n,m,vs,vt,mp1[55][55],mp2[55][55],G,S;
int dir[4][2]={0,1,0,-1,1,0,-1,0};
scanf("%d",&T);
for(int _case=1; _case<=T; ++_case){ int ans=0; scanf("%d%d%d%d",&n,&m,&G,&S);
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
scanf("%d",&mp1[i][j]) , ans+=mp1[i][j];
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
scanf("%d",&mp2[i][j]) , ans+=mp2[i][j]; vs = 2*n*m; vt = vs+1;
init();
for(int i=0; i<n; i++)
for(int j=0; j<m; j++){
int u=i*m+j;
if((i+j)&1){
addEdg(vs , u , mp1[i][j]);
addEdg(u , u+n*m , INF);
addEdg(u+n*m , vt , mp2[i][j]);
for(int e=0; e<4; e++)
{
int ti , tj;
ti=i+dir[e][0];
tj=j+dir[e][1];
if(ti>=0&&ti<n&&tj>=0&&tj<m)
addEdg(u , ti*m+tj+n*m , G);
}
}
else{
addEdg(vs , u , mp2[i][j]);
addEdg(u , u+n*m , INF);
addEdg(u+n*m , vt , mp1[i][j]);
for(int e=0; e<4; e++)
{
int ti , tj;
ti=i+dir[e][0];
tj=j+dir[e][1];
if(ti>=0&&ti<n&&tj>=0&&tj<m)
addEdg(u , ti*m+tj+n*m , S);
}
}
}
ans-=maxFlow_sap(vs , vt , vt+1);
printf("Case %d: %d\n",_case , ans);
}
}

HDU 3820 Golden Eggs( 最小割 奇特建图)经典的更多相关文章

  1. HDU 3820 Golden Eggs (SAP | Dinic)

    Golden Eggs Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. HDU 3820 Golden Eggs

    http://acm.hdu.edu.cn/showproblem.php?pid=3820 题意:n*m的格子,每个格子放金蛋或银蛋,每个格子的金蛋和银蛋都有一个对应的点权,如果有两个金蛋相连,则需 ...

  3. hdu 4289 Control(最小割 + 拆点)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 Control Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  4. HDU 4859 海岸线(最小割+最大独立点权变形)

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题意: 欢迎来到珠海!由于土地资源越来越紧张,使得许多海滨城市都只能依靠填海来扩展市区以求发展.作为Z市的 ...

  5. hdu 2435dinic算法模板+最小割性质

    hdu2435最大流最小割 2014-03-22 我来说两句 来源:hdu2435最大流最小割 收藏 我要投稿 2435 There is a war 题意: 给你一个有向图,其中可以有一条边是无敌的 ...

  6. King of Destruction HDU - 3002 && HDU - 3691(全局最小割)

    求无向图的最小割 有没有源点都一样,不影响 #include <iostream> #include <cstdio> #include <sstream> #in ...

  7. HDU.4700.Flow(构造 最小割树)

    题目链接 \(Description\) 给定\(n\)以及\(n\)个点任意两点之间的最大流,求一张无向图满足给定条件. \(n\leq100\). \(Solution\) 有些类似最小割树. 我 ...

  8. hdu 3870(平面图最小割转最短路)

    Catch the Theves Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 65768/32768 K (Java/Others) ...

  9. HDU 4289 Control (最小割 拆点)

    Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

随机推荐

  1. subprocess模块windows系统命令和linux系统命令

    windows系统 查看所有进程 tasklist 查找指定进程 tasklist | findstr pycharm 程序名称 PID(大写) 数量 大小 python exe 2640 conso ...

  2. Codeforces Round #877 (Div. 2) D. Olya and Energy Drinks

    题目链接:http://codeforces.com/contest/877/problem/D D. Olya and Energy Drinks time limit per test2 seco ...

  3. 图论trainning-part-1 A. 最短路

    A. 最短路 Time Limit: 1000ms Memory Limit: 32768KB 64-bit integer IO format: %I64d      Java class name ...

  4. 九度oj 题目1499:项目安排

    题目描述: 小明每天都在开源社区上做项目,假设每天他都有很多项目可以选,其中每个项目都有一个开始时间和截止时间,假设做完每个项目后,拿到报酬都是不同的.由于小明马上就要硕士毕业了,面临着买房.买车.给 ...

  5. 100个直接可以拿来用的JavaScript实用功能代码片段(转)

    把平时网站上常用的一些实用功能代码片段通通收集起来,方面网友们学习使用,利用好的话可以加快网友们的开发速度,提高工作效率. 目录如下: 1.原生JavaScript实现字符串长度截取2.原生JavaS ...

  6. Luogu【P3609】蹄子剪刀布(DP+滚动数组)

    题目链接 (突然高兴 又一次瞬间想出转移方程并一遍A掉!!233333(虽然从二叉苹果树那题开始我就发现我的方程好像跟别人不大一样 (所以这样就可以名正言顺的水题解了 设f[i][j][k]表示考虑F ...

  7. LinkedList的构造函数有哪些

    LinkedList构造函数有(两种): public LinkedList() public LinkedList(Collection<? extends E> c) /** * Co ...

  8. 【前端学习笔记】关于CSS通过一个块改变另一个块的样式

    <body><div id="a" style="background:#0F0; height:100px; width:100px;"&g ...

  9. Centos 安装Python3的方法

    由于centos7原本就安装了Python2,而且这个Python2不能被删除,因为有很多系统命令,比如yum都要用到. [root@VM_105_217_centos Python-3.6.2]# ...

  10. 矩阵乘法 BZOJ 2738

    矩阵乘法 [问题描述] 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. [输入格式] 第一行两个数N,Q,表示矩阵大小和询问组数:接下来N行N列一共N*N个数,表示这个矩阵: ...