大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点。路径的权就是数的和。输出一条权值最大的路径方案

思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇数。显然能够遍历。要是有一个偶数。能够绘图发现,把图染成二分图后,(1,1)为黑色,总能有一种构造方式能够仅仅绕过不论什么一个白色的点。然后再遍历其它点。而绕过黑色的点必定还要绕过两个白色点才干遍历所有点,这是绘图发现的。所以找一个权值最小的白色点绕过就能够了,

题解给出了证明:

如果n,mn,m都为偶数,那么讲棋盘黑白染色。如果(1,1)(1,1)和(n,m)(n,m)都为黑色,那么这条路径中黑格个数比白格个数多11,而棋盘中黑白格子个数同样。所以必定有一个白格不会被经过。所以选择白格中权值最小的不经过。


//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define reveach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
#define rep(i,n) for ( int i=0; i< int(n); i++ )
using namespace std;
typedef long long ll;
#define X first
#define Y second
typedef pair<int,int> pii; template <class T>
inline bool RD(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void PT(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) PT(x / 10);
putchar(x % 10 + '0');
} const int N = 123;
int mp[N][N];
int main(){ int n,m;
while(~scanf("%d%d",&n,&m)){
int sum = 0;
memset(mp,0,sizeof(mp));
REP(i,n) REP(j,m) RD(mp[i][j]), sum += mp[i][j];
if( (n&1)||(m&1) ){
PT(sum);puts("");
if( n&1 ){
REP(r,n){
if( r&1 ) REP(i,m-1) putchar('R');
else REP(i,m-1) putchar('L');
if( r != n) putchar('D');
}
}else{
REP(c,m){
if( c&1 ) REP(i,n-1) putchar('D');
else REP(i,n-1) putchar('U');
if( c != m) putchar('R');
}
}
}else{
int minn = 1LL<<30;
int sx,sy;
REP(x,n) REP(y,m){
if( (x+y)&1 ){
if( mp[x][y] < minn) minn = mp[x][y], sx = x,sy = y;
}
}
printf("%d\n",sum-minn);
bool ok = 0;
REP(y,m){
if( (y-1)/2+1 == (sy-1)/2+1){
ok = 1;
bool rgt = 1;
REP(x,n){
if( x == sx) {
if( x != n) putchar('D');
continue;
}
if( rgt) putchar('R');
else putchar('L');
if( x != n) putchar('D');
rgt = !rgt;
}
y++;
}else{
if( ((y&1)&&ok==0) || ((y%2 == 0)&&ok) ){
REP(x,n-1) putchar('D');
}else{
REP(x,n-1) putchar('U');
}
}
if( y != m) putchar('R');
}
}
puts("");
}
}

Travelling Salesman Problem

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 864    Accepted Submission(s): 313

Special Judge

Problem Description
Teacher Mai is in a maze with n rows
and m columns.
There is a non-negative number in each cell. Teacher Mai wants to walk from the top left corner (1,1) to
the bottom right corner (n,m).
He can choose one direction and walk to this adjacent cell. However, he can't go out of the maze, and he can't visit a cell more than once.



Teacher Mai wants to maximize the sum of numbers in his path. And you need to print this path.
 
Input
There are multiple test cases.



For each test case, the first line contains two numbers n,m(1≤n,m≤100,n∗m≥2).



In following n lines,
each line contains m numbers.
The j-th
number in the i-th
line means the number in the cell (i,j).
Every number in the cell is not more than 104.
 
Output
For each test case, in the first line, you should print the maximum sum.



In the next line you should print a string consisting of "L","R","U" and "D", which represents the path you find. If you are in the cell (x,y),
"L" means you walk to cell (x,y−1),
"R" means you walk to cell (x,y+1),
"U" means you walk to cell (x−1,y),
"D" means you walk to cell (x+1,y).
 
Sample Input
3 3
2 3 3
3 3 3
3 3 2
 
Sample Output
25
RRDLLDRR
 
Author
xudyh
 
Source
 
Recommend
wange2014

HDU 5402 Travelling Salesman Problem (构造)(好题)的更多相关文章

  1. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  2. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  3. HDU 5402 Travelling Salesman Problem(棋盘染色 构造 多校啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5402 Problem Description Teacher Mai is in a maze wit ...

  4. hdu 5402 Travelling Salesman Problem(大模拟)

    Problem Description Teacher Mai ,) to the bottom right corner (n,m). He can choose one direction and ...

  5. HDU 5402 Travelling Salesman Problem(多校9 模拟)

    题目链接:pid=5402">http://acm.hdu.edu.cn/showproblem.php?pid=5402 题意:给出一个n×m的矩阵,位置(i.j)有一个非负权值. ...

  6. HDU 5402 : Travelling Salesman Problem

    题目大意:n*m的格子,从左上角走到右下角,每个格子只能走一遍,每个格子上有一个非负数,要让途径的数字和最大,最后要输出路径 思路:显然茹果n,m有一个是奇数的话所有格子的数字都能被我吃到,如果都是偶 ...

  7. hdu 5402 Travelling Salesman Problem (技巧,未写完)

    题意:给一个n*m的矩阵,每个格子中有一个数字,每个格子仅可以走一次,问从(1,1)走到(n,m) 的路径点权之和. 思路: 想了挺久,就是有个问题不能短时间证明,所以不敢下手. 显然只要n和m其中一 ...

  8. HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  9. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

随机推荐

  1. leetcode_1014. Capacity To Ship Packages Within D Days

    https://leetcode.com/problems/capacity-to-ship-packages-within-d-days/ 传送带要在D天内把所有货物传送完,但是传送带每天有传送容量 ...

  2. Java常用工具类---IP工具类、File文件工具类

    package com.jarvis.base.util; import java.io.IOException;import java.io.InputStreamReader;import jav ...

  3. 【java】查重类的实现

    import java.util.Vector; public class ElementCheck { // 重复优先 static Vector<Integer> CheckSameE ...

  4. Maven常用仓库地址以及手动添加jar包到仓库

    http://www.blogjava.net/fancydeepin 共有的仓库 http://repository.sonatype.org/content/groups/public/http: ...

  5. PHP 数组相加 和 数组合并array_merge

    $arr1 = array("a"=>"PHP","b"=>"java","python" ...

  6. VSCODE插件开发:用户输入输出

    阅读这篇文章之前,假设你已经具有开发helloworld的插件的能力. vscode.window 简介 vscode.window 负责当前激活窗口的输入输出,比如展示信息,和用户输入等功能都是用v ...

  7. Runlevel in Linux

    运行级别(Runlevel)指的是Unix或者Linux等类Unix操作系统下不同的运行模式.运行级别通常分为7等,分别是从0到6,但如果必要的话也可以更多. 例如在大多数Linux操作系统下一共有如 ...

  8. Python之套接字

    Python之套接字 客户端Client/服务端Server架构: 1.硬件C/S架构 2.软件C/S架构 OSI4层:4层里有五层,五层里又有7层. 四层---------五层--------七层 ...

  9. python 库文件版本收集及安装

    版本收集:pip freeze > require.txt版本安装:pip install -r require.txt

  10. 将cocos2dx 2.x.x从eclipse转移到Android Studio遇到的问题

    cocos2dx 2.x.x从eclipse转移到Android Studio遇到的问题 可能我用不太习惯Android Studio才会遇到这么多问题,让老手们见笑了. cocos2dx的最新版本, ...