T1008 选数 codevs
已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n)。从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:
3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34。
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=29)。
键盘输入,格式为:
n , k (1<=n<=20,k<n)
x1,x2,…,xn (1<=xi<=5000000)
屏幕输出,格式为:
一个整数(满足条件的种数)。
4 3
3 7 12 19
1
(1<=n<=20,k<n)
(1<=xi<=5000000)
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio> using namespace std; int n,k,ans;
int a[]; bool judge(int n)
{
for(int i=;i*i<=n;i++)
if(n%i==)
return false;
return true;
} void DFS(int x,int tot,int goal)
{
if(x>=k)
{
if(judge(tot))
ans++;
return ;
} for(int i=goal+;i<=n;i++)
{
DFS(x+,a[i]+tot,i);
}
} int main()
{
cin>>n>>k;
for(int i=;i<=n;i++)
cin>>a[i];
DFS(,,);
cout<<ans;
return ;
}
T1008 选数 codevs的更多相关文章
- codevs——1008 选数
1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 已知 n ...
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- CODE VS1008选数
#include<cstdlib> #include<cstdio> #include<iostream> #include<cmath> #inclu ...
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ3930: [CQOI2015]选数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...
- 【BZOJ3930】选数(莫比乌斯反演,杜教筛)
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...
- 【BZOJ2734】【HNOI2012】集合选数(状态压缩,动态规划)
[BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所 ...
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
随机推荐
- Jarvis OJ-Smashes
栈溢出之利用-stack-chk-fail from pwn import * old_flag_addr = 0x600d20 new_flag_addr = 0x400d20 #p = proce ...
- bootstrap 翻页(对齐的链接)
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- js常用技巧汇总
将彻底屏蔽鼠标右键 oncontextmenu="window.event.returnvalue=false" <table border oncontextmenu=re ...
- ios调试技巧
一.概述1.掌握调试技巧,调试技术最基本,最重要的调试手段包括:单步跟踪,断点,变量观察等.单步跟踪(Step)所谓单步跟踪是指一行一行地执行程序,每执行一行语句后就停下来等待指示,这样你就能够仔细了 ...
- Xcode的Git管理
在Xcode中创建工程的时候,我们很容易的可以将新创建的工程添加到Git中,如图: 但是如果是本地已经有的工程,那该如何添加到Git中呢? 首先终端进入到该工程的目录. 然后: git init gi ...
- 将 PROTOCOL 的方法声明为 MUTATING
将 PROTOCOL 的方法声明为 MUTATING 由 王巍 (@ONEVCAT) 发布于 2014/08/17 Swift 的 protocol 不仅可以被 class 类型实现,也适用于 str ...
- 杭电 5748 Bellovin
Description Peter has a sequence and he define a function on the sequence -- , where is the length ...
- 【HDU 2126】Buy the souvenirs(01背包)
When the winter holiday comes, a lot of people will have a trip. Generally, there are a lot of souve ...
- 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 F题
The Heaviest Non-decreasing Subsequence Problem 解题心得 这个题就是一个简单的动态规划,非递减最长子序列的改版(加一个权重),只要把权重为5的改成5个权 ...
- Spark MLlib + maven + scala 试水~
使用SGD算法逻辑回归的垃圾邮件分类器 package com.oreilly.learningsparkexamples.scala import org.apache.spark.{SparkCo ...