【传送门】https://nanti.jisuanke.com/t/31447

【题目大意】:有一个二分图,问能不能找到它的一个子图,使得这个子图中所有点的度数在区间【L,R】之内。

【题解】首先我们分这几种情况讨论:

(1)如果集合U,V中存在某个点,它的度数小于L,那么肯定就不满足题意,直接输出No。所以对任意i, degree[i] >= L

(2)如果集合U,V中所有点的度数都在给定区间内,直接输出Yes。

(3)如果集合U,V中存在某些点的度数大于R,则需要减少与它关联的边,直到它的度数小于等于R

那么如何删边呢?我们把某个度数过大的点X的所有终点放入优先队列中,这个队列根据点的度数排好序,度数大的点Y在队首,当X的度数大于R时,我们取出队首Y,如果Y度数大于L,代表可以删边,X,Y的度数均自减1。

如果X的度数大于R时,队首Y的度已经不能再减(已经小于等于L了),那么就表明找不到这样的子图,输出No。

把所有的点都按照上述过程扫一遍,看中途是不是会判定找不到这样的子图。

时间复杂度:O(N*LogN)

有网上题解说可以使用网络流,暂时记下以后再探讨。

【AC代码】

#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = ;
vector<int> G[maxn];//存图
int offset = ;//两个集合标号都从1开始为了区分设置一个偏移量,右边的序号都加上偏移量
int degree[maxn];//存度数 // 自定义优先级 按度优先
struct cmp
{
bool operator()(const int &t1,const int &t2)
{
return degree[t1] < degree[t2];
}
}; //初始化
void init(){
memset(degree , , sizeof degree);
for(int i=; i<maxn; i++) G[i].clear();
} int main(){
int n,m,k;
int l,r;
int u,v;
int ca = ;
while(scanf("%d %d %d", &n,&m,&k) != EOF){
init();
int flag = ;
scanf("%d %d",&l, &r);
//建图,记录度数
for(int i=; i<=k; i++){
scanf("%d %d",&u, &v);
G[u].push_back(v+offset);
G[v+offset].push_back(u);
degree[u]++;
degree[v+offset]++;
}
//只要有一个点度数小于L就GG
for(int i= ; i<=n; i++){
// cout<<" "<<degree[i]<<endl;
if(degree[i] < l){
flag = ;
break;
}
}
for(int i=+offset; i<=m+offset; i++){
// cout<<" "<<degree[i]<<endl;
if(degree[i] < l){
flag = ;
break;
}
}
if(!flag){
printf("Case %d: No\n" , ca++);
continue;
} //开始执行步骤(3) 对左边集合所有点 删边减度
for(int i=; i<=n; i++){
if(flag == ) break; priority_queue<int,vector<int>,cmp> q; //定义优先队列
while(!q.empty()) q.pop(); //对每一个点X的终点入队等待删边
for(int j=; j<G[i].size(); j++){
q.push(G[i][j]);
}
//只要这个点 X的度数大于R必须删边减度
while(degree[i] > r){
int f = ;
//取出队首
int tp = q.top();
int t = degree[tp];
q.pop();
if(t- >= l){
f = ;
degree[tp] --;
degree[i]--; }else{
f = ;
}
if(degree[tp] >= l+)
q.push(tp);
if(f == ){
flag = ;
break;
}
}
} //一样的操作,对右边集合
for(int i=+offset; i<=m+offset; i++){
if(flag == ) break;
priority_queue<int,vector<int>,cmp> q;
while(!q.empty()) q.pop(); for(int j=; j<G[i].size(); j++){
q.push(G[i][j]);
} while(degree[i] > r){
int f = ;
int tp = q.top();
int t = degree[tp];
q.pop();
if(t- >= l){
f = ;
degree[tp] --;
degree[i]--; }
if(degree[tp] >= l+)
q.push(tp);
if(f == ){
flag = ;
break;
}
}
} ///最终判定
if(flag) printf("Case %d: Yes\n" , ca++);
else printf("Case %d: No\n" , ca++); }
}

2018 ICPC 沈阳网络预赛 Fantastic Graph (优先队列)的更多相关文章

  1. 2018 ICPC 沈阳网络赛

    2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...

  2. 2018 ICPC 沈阳网络赛预赛 Supreme Number(找规律)

    [传送门]https://nanti.jisuanke.com/t/31452 [题目大意]:给定一个数字(最大可达10100),现在要求不超过它的最大超级质数.超级质数定义:对于一个数,把它看成数字 ...

  3. 2018 ICPC 徐州网络预赛 Features Track (STL map pair)

    [传送门]https://nanti.jisuanke.com/t/31458 [题目大意]有N个帧,每帧有K个动作特征,每个特征用一个向量表示(x,y).两个特征相同当且仅当他们在不同的帧中出现且向 ...

  4. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  5. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  6. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  7. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  8. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  9. 2018 ICPC 徐州网络赛

    2018 ICPC 徐州网络赛 A. Hard to prepare 题目描述:\(n\)个数围成一个环,每个数是\(0\)~\(2^k-1\),相邻两个数的同或值不为零,问方案数. solution ...

随机推荐

  1. ES6新增"Promise"可避免回调地狱

    Promise是一个构造函数,自己身上有all.reject.resolve这几个眼熟的方法,原型上有then.catch等同样很眼熟的方法. 那就new一个 var p = new Promise( ...

  2. gdb插件使用方法

    0x00 peda peda 安装: git clone https://github.com/longld/peda.git ~/peda echo "source ~/peda/peda ...

  3. PAT (Basic Level) Practise (中文)-1032. 挖掘机技术哪家强(20)

    PAT (Basic Level) Practise (中文)-1032. 挖掘机技术哪家强(20) http://www.patest.cn/contests/pat-b-practise/1032 ...

  4. Bootstrap历练实例:小的按钮

    <!DOCTYPE html><html><head> <meta http-equiv="Content-Type" content=& ...

  5. Bootstrap历练实例:大的按钮

    <!DOCTYPE html><html><head> <meta http-equiv="Content-Type" content=& ...

  6. ios之UIWebView(1)

    UIWebView可以让你创建一个网页浏览器,类似safari,而不是在程序中启动safsri哦.是不是觉得很棒呢?废话少说,切入正题. 一.创建UIWebView [java] view plain ...

  7. VUE2中axios的使用方法

    一,安装 npm install axios 二,在http.js中引入 import axios from 'axios'; 三,定义http request 拦截器,添加数据请求公用信息 axio ...

  8. Django REST framework 中的视图

    1.Request REST framework传入视图的request对象不再是Django默认的Httprequest对象,而是DRF提供的扩展类的Request类的对象 常用属性 request ...

  9. 目录扫描工具DirBuster

    DirBuster是用来探测web服务器上的目录和隐藏文件的.因为DirBuster是采用java编写的,所以运行前要安装上java的环境. 来看一下基本的使用: ①:TargetURL下输入要探测网 ...

  10. Linux系统状态检测

    基于Red Hat Enterprise Linux 7.5 1.ifconfig ifconfig用于获取和配置网络接口的网络参数,格式为“ifconfig [网络设备] [参数]” 参数: add ...